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Deep Learning Started a Revolution
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But Deep Learning is Still Limited

e Computational demands of training
e Need for labelled data

e Computational demands for serving on small devices
o i.e. Internet of Things, embedded systems
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Deep Learning Resource Efficiency

e If deep learning can succeed with less,

then deep learning can succeed at more

o  More devices will be equipped to operate
Neural Networks (NNs)

o More computationally efficient NNs will be able
to solve more difficult tasks

o  More tasks will become feasible with NN’s that
learn more efficiently from measurements,
data, and labels




Deep Learning Minimalism Applications in this Work

e Minimal Context Block Tracking
o Performs side-channel analysis with as few measurements as possible while maintaining

performance
e NodeDrop
o  Reduces the memory footprint and computational cost of neural networks while maintaining
performance

e Anomaly Detection

o General purpose time-series anomaly detection without needing expensive domain specific
labelled data

e Image Compression

o Aunique approach to using NNs for image compression, allows us to compare the explanatory
power of NNs with-more traditional compression algorithms



Deep Learning for Side-Channel Analysis

e A side channel is any unintended channel of information leakage from a

device
o Examples include power drain, electromagnetic (EM) radiation, fan sound, temperature output
e \WVe use the power and EM side channels to analyze program execution on

the device
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Minimal Context Block-Tracking

Why it Matters:

e Block-Tracking is valuable on its own as a tool for identifying program flow

e Block-Tracking can assist with other execution analysis tasks using blocks as
a sort of “alphabet” or “dictionary”

e Finding a minimum required context for block-tracking gives guidance for
reasonable window size when approaching future execution analysis tasks



Block-Tracking: Model

e Model Input: Sub-window of measured data from
signal

e Early Layers: Multiple 1D convolution layers learn
signal features

e Middle layer: Recurrent GRU layer will enable network
to train on a different length window then tested

e Late Layers: Fully Connected layer leads to an output
block-type prediction for a given window input

e Repeated: This network is applied to all sub-windows
of a signal to predict block-type over the whole signal
time
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Block-Tracking: Minimum Context

e Goal 1: Perform block-tracking with high accuracy
e Goal 2: Find the minimum window-size at which block-tracking does not lose

significant accuracy
o Gives us a maximum resolution estimate for block-tracking
o Provides insight for window-size selection in future work (see later this slideshow). This is very
beneficial!
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Block-Tracking: Conclusion

e \Ve are able to perform block-tracking with high accuracy

e \We found that a sub-window of size 128, ~4 instruction cycles in our setup,
was the smallest window size for which our model performed well

e For future execution analysis tasks requiring windows, we will start by using
~4 instruction cycles as a starting point






Categories for Methods of Network Compression

e |terative heuristic pruning and retraining
o Training time is significantly extended by these techniques

e Quantized or binarized networks
o Could be stacked with other methods relatively easily

e Regularization or sparsifying techniques
o  Our technique will be a part of this category



An Overview of our Technique

e \We propose the NodeDrop conditions, one for vanilla and one for batchnorm,
to provide a guarantee for when a neuron is not used
o  Take advantage of “Dying ReLU” effect of the flat region in ReLU

e Then we propose regularization to encourage meeting the condition above
o The regularization will push nodes to satisfying our “dead” node conditions in the absence of
gradients from the primary objective function

e All proofs apply to convolutional and fully connected layers
e \We demonstrate results significantly reducing network sizes while maintaining
performance



1. Given a node with input vector ¥ € [0, 1]™, a weight vector
w € R™, bias b € R, and an activation function o such

that o(v) =0 Vo < 0.

2. We wish to find the condition under which this node is
dead, o(w - ¥ 4+ b) = 0 for all inputs Z.




3. Since o(v) = 0Vv < 0, we simply need to find the
condition under which w - £ + b < 0. We have constrained
the inputs to be within [0, 1], ¥ € [0, 1]™, so we have:

@ -+ b < || max (i, 0) |1 +b < [l +b

4. Then, || max(w;,0)|1 +0<0=0c(wW- -¥+b) =0
This leaves us with the NodeDrop condition:

| max(w;,0)||1 +6 <0




1. Given a node with input vector & € [0, 1]™, a weight vector
w € R™, bias b € R, and an activation function o such
that o(v) = 0 Yo < 0.

ocv) =0V <0 (2) o(v) €[0,1] Vo  (3)




|| max(w, 6)||1 +b=-—

Al max (@, 0)[|1 +b+C| = Al ) max(w;,0) +b+C]|
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Batch Norm Condition and Regularization

We assume an activation function that is “dead” for any value less than O.
Thus we usg thg following NodeDrop condition: M\/E +8<0
And regularization term: lv[v/m + |8 + C|

RelLU may be used for the batch norm version of NodeDrop!



Intialization Size Effect on Converged Network Size ) Effect on NodeDrop: MNIST ) Effect on Accuracy: MNIST
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Table 2: Cifar10 Classification Results

NETWORK A TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

BASELINE 13.01 15.04M 0.0 1.0 4736 0.0
10 % 10" 14.14 0.45M 97.00 33.28 1115 76.46
VGG 16 w/o BN 1.0 x 1073 13:27 0.31M 97.96 48.98 859 81.9
32 wiq~~ 13.76 0.13M 99.12 114.00 612 87.08
10% 10~ 90.00 0.0M 100.0 - 0 100.0

BASELINE 6.50 15.04M 0.0 1.0 4736 0.0

1.0 %108 6.88 8.88M 40.7 1.69 3624 23.48
1.0 x 10~° 7.36 1.39M 90.75 10.81 1164 75.42
32 X 19~ 7.41 0.61M 95.96 24.76 751 84.14
1.0 x 1074 20.16 0.10M 99.35 152.84 308 93.50

BASELINE 14.94 1.04M 0.0 1.0 456 0.0
1.0 x 10~ 15.21 0.66M 35.69 1.55 363 20.39
D NET4 B
ENSENETA0 wio BN 1.0 x 10~° 14.74 0.41M 60.47 2.54 291 36.18
1.0 x 1074 14.99 0.08M 91.96 12.43 154 66.22

BASELINE 6.80 1.05M 0.0 1.0 456 0.0

1.0 x 10~ 7.13 0.99M 4.19 1.04 447 1.97
1.0 x 1072 6.75 0.98M 5.67 1.06 443 2.85
1.0 %104 7.79 0.55M 47.12 1.89 333 26.73

DENSENET40




Table 3: Cifar100 Classification Results

NETWORK A TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

VGG 16 BASELINE 27.65 15.04M 0.0 1.0 4736 0.0
1.0 x 107 27.69 9.78M 34.99 1.54 3914 17.35
1.0 x 107° 28.04 1.83M 87.82 8.21 1623 65.73
Lo 10 38.49 0.46M 96.93 32.58 729 84.6

BASELINE 26.5 1.05M 0.0 1.0 456 0.0

1.0 x 10~ 26.92 1.05M 2.7 1.02 451 1.09
DERGENNERY L setp ™ 27.01 1.03M 4.74 1.05 445 2.41
1.0 x 10~ 29.38 0.744M 31.12 1.45 376 17.54

Table 4. ImageNet Classification Results
NETWORK A TEST ERROR PARAMETERS PRUNED % FACTOR NODES PRUNED %

VGG 19 BASELINE 33.79 143.65M 0.0 1.0 14696 0.0
1.0x 107° 34.85 23.75M 83.47 6.05 6670 54.61




Network Size Convergence

Legend
~—— Network Size Training Curve
~—— Accuracy Training Curve
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Conclusion

e NodeDrop is a powerful way to reduce the size of simple or complex networks

e Guarantee ensures that removal of nodes does not impact network
performance

e Vanilla NodeDrop reduces network size by up to a factor of 100x while
maintaining performance with the CIFAR10 dataset

e BatchNorm NodeDrop reduces network size by a factor 25x for CIFAR10, 8x
for CIFAR100, and 6x for ImageNet datasets
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Techniques for Time-Series Anomaly Detection

e Reconstruction

e Forecasting

o  Assumptions and Statistics Based
o Learning Based

e (Generative
e Combinations and Variations

o Combine multiple techniques
o Vary pre-processing, post-processing and loss
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Time-series Anomaly Detection data and Metric

e Numenta Anomaly Benchmark, Yahoo, NASA
e F1-= '
- TP+1/2x(FP+FN)

e T[ime Series F1
o Unfortunate lack of standardization
Overlapping windows?

O
o Istime step event or a whole anomaly?
o We use F1 scoring function of TADGAN




— Modd [ NASA | YAHOO NAB )
[ SMAP | MSL | AT | A2 | A3 [ A4 | A [ AdBx [ AWS | Taar | Twees | i | o |
" DenseAE w/ Post | 0623 | 0797 | 0.916 | 0.995 | 0976 | 0912 | 08 | 0762 | 0.762 | 0.8 | 071 | 0823 | 0.115 |
“DenseAE w/o Post | 0.655 | 0.608 | 0.496 | 0283 | 0.097 | 0041 | 0667 | 0533 | 0.764 | 0333 | 0742 | 0474 | 0252 |
 TADGANTS] | 0623 | 0.104 | 08 {0867 | 0685 | 06 | 08 | 08 | 068 [ 0486 | 0609 [ 0693 [ 0.1 |

[ LSTMDI | 046 | 09 [ 0747 | 058 [ 0772 | 045 [ 075 | 059 | 0474 | 063 | 0543 | 02 [ 7T
m
M Azure [19] | 0218 | 0.118 | 0352 [ 0612 | 0.257 | 0204 | 0.125 | 0.066 | 0.173 | 0.166 | 0.118 | 0219 | 0.152_




Neural Networks for Lossy Image Compression

e Encode animage to a compressed form
e Decode to reconstruct similar image
e T[raditional approaches
o Wauvelets, Fourier Transforms, Color Depth Projection, etc.

e Deep learning approaches
o  Autoencoders
o Sinusoidal Representation Networks (SIRENSs)






Compressed Implicit Neural representation

Original COIN COIN Residual

e Use SIREN'’s to
compress image and
send quantized weights
instead of image . |

e Benefits over PEG JPEG Residual
reconstruction-based ; by

approach

o — Small model size

o Gives concept of
‘efficiency’ of neural
network
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Outlook

e Entropy coding, more complete quantization analysis
e Regqularization combined with delta coding on the blocks
e Preprocessing images



In Conclusion

e Minimalism in deep learning allows for the expansion of deep learning

applications through improved efficiency
e Minimalism in deep learning is a broad topic, in this talk we explored:

®,

(@)

Q

Minimizing number of input measurements for side-channel analysis

Minimizing number of nodes in general purpose neural networks

Using autoencoders for unsupervised, general purpose, and highly performant time-series
anomaly detection

Improving an exciting new approach to image compression, and offering insight into a
technique which-could have broader implications to network efficiency



