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But Deep Learning is Still Limited

● Computational demands of training
● Need for labelled data
● Computational demands for serving on small devices

○  i.e. Internet of Things, embedded systems



Deep Learning’s Limitations come from Limited Resources

● Deep learning can advance in 
two ways

○ Improve availability of limited 
resources

○ Improve resource efficiency
■ Minimalism in Deep Learning



Deep Learning Resource Efficiency

● If deep learning can succeed with less, 
then deep learning can succeed at more

○ More devices will be equipped to operate 
Neural Networks (NNs)

○ More computationally efficient NNs will be able 
to solve more difficult tasks

○ More tasks will become feasible with NN’s that 
learn more efficiently from measurements, 
data, and labels



Deep Learning Minimalism Applications in this Work

● Minimal Context Block Tracking
○ Performs side-channel analysis with as few measurements as possible while maintaining 

performance
● NodeDrop

○ Reduces the memory footprint and computational cost of neural networks while maintaining 
performance

● Anomaly Detection
○ General purpose time-series anomaly detection without needing expensive domain specific 

labelled data
● Image Compression

○ A unique approach to using NNs for image compression, allows us to compare the explanatory 
power of NNs with more traditional compression algorithms



Deep Learning for Side-Channel Analysis

● A side channel is any unintended channel of information leakage from a 
device

○ Examples include power drain, electromagnetic (EM) radiation, fan sound, temperature output
● We use the power and EM side channels to analyze program execution on 

the device



Block-Tracking: Intro

Label every time point with its corresponding block-type. Example shown above. 
Note that blocks often repeat the same block-type  consecutively.



Block-Tracking: Data Used

● Measuring two channels, power 
consumption and EM radiation

● Two programs tested  with 3-5 
block-types:

Program Random Number Gen. Bit-Toggling 

Block-Types -Write Low
-Write High
-Random Number Seed
-Random Number Gen.
-Loop

-Write Low
-Write High
-Loop



Minimal Context Block-Tracking

Why it Matters:

● Block-Tracking is valuable on its own as a tool for identifying program flow
● Block-Tracking can assist with other execution analysis tasks using blocks as 

a sort of “alphabet” or “dictionary” 
● Finding a minimum required context for block-tracking gives guidance for 

reasonable window size when approaching future execution analysis tasks



Block-Tracking: Model

● Model Input: Sub-window of measured data from 
signal

● Early Layers: Multiple 1D convolution layers learn 
signal features

● Middle layer: Recurrent GRU layer will enable network 
to train on a different length window then tested

● Late Layers: Fully Connected layer leads to an output  
block-type prediction for a given window input

● Repeated: This network is applied to all sub-windows 
of a signal to predict block-type over the whole signal 
time



Block-Tracking: Minimum Context

● Goal 1: Perform block-tracking with high accuracy
● Goal 2: Find the minimum window-size at which block-tracking does not lose 

significant accuracy
○ Gives us a maximum resolution estimate for block-tracking
○ Provides insight for window-size selection in future work (see later this slideshow). This is very 

beneficial!



Block-Tracking: Performance

● Model performed block-tracking with 
accuracies above 99% for sub-windows of 
size 128 and above.

● Using the Math (Random Number Generation) 
Program experiments we identify sub-window 
size of 128 as a good candidate

● Model performed well with sub-windows of 
size 128 for all distance and program setups



Block-Tracking: Performance



Block-Tracking: Conclusion

● We are able to perform block-tracking with high accuracy
● We found that a sub-window of size 128, ~4 instruction cycles in our setup, 

was the smallest window size for which our model performed well
● For future execution analysis tasks requiring windows, we will start by using 

~4 instruction cycles as a starting point



NodeDrop

● We want small neural networks
○ Cheaper storage, memory, and runtime
○ Expand opportunities for local neural network applications on 

phones,  embedded systems, IoT devices
● … but not too small!

○ A network should still be appropriately sized to achieve 
desired task

● Choosing the number of features per layer can be a 
challenging and time intensive task for neural 
network architects.



Categories for Methods of Network Compression

● Iterative heuristic pruning and retraining
○ Training time is significantly extended by these techniques

● Quantized or binarized networks
○ Could be stacked with other methods relatively easily

● Regularization or sparsifying techniques
○ Our technique will be a part of this category



An Overview of our Technique

● We propose the NodeDrop conditions, one for vanilla and one for batchnorm, 
to provide a guarantee for when a neuron is not used

○ Take advantage of “Dying ReLU” effect of the flat region in ReLU
● Then we propose regularization to encourage meeting the condition above

○ The regularization will push nodes to satisfying our “dead” node conditions in the absence of 
gradients from the primary objective function

● All proofs apply to convolutional and fully connected layers
● We demonstrate results significantly reducing network sizes while maintaining 

performance



The Vanilla NodeDrop Condition

We propose the NodeDrop condtion:



The Vanilla NodeDrop Condition (cont.)



Activation function

Conditions for Activation function:

We used SoftClampedReLU



Regularization

● We want to encourage the condition
● Specifically, we will encourage                                         for some constant C
● Thus, we used the following regularization:

● L2 regularization is not appropriate for our goals, as it is cheaper to have 
multiple identical  nodes summed than one unique node with this 
regularization.                                                              



Batch Norm Extension

● We make an added assumption that, in a batch of 
size m, if a node is guaranteed not to activate, then 
we can safely remove it.

● Lemma: 
○ γ and β are learnable parameters



Batch Norm Edition (cont.)



Batch Norm Condition and Regularization

● We assume an activation function that is “dead” for any value less than 0.
● Thus we use the following NodeDrop condition:
● And regularization term: 
● ReLU may be used for the batch norm version of NodeDrop!



MNIST Exploratory Experiments



CIFAR 10 Results



CIFAR 100 and ImageNet Results



CIFAR10 Convergence examples



Conclusion

● NodeDrop is a powerful way to reduce the size of simple or complex networks
● Guarantee ensures that removal of nodes does not impact network 

performance
● Vanilla NodeDrop reduces network size by up to a factor of 100x while 

maintaining performance with the CIFAR10 dataset
● BatchNorm NodeDrop reduces network size by a factor 25x for CIFAR10, 8x 

for CIFAR100, and 6x for ImageNet datasets



Autoencoders for State-of-the-art in Time-Series Anomaly 
Detection
● Identify anomalies in time-series signals
● What is an Anomaly?

○ Not normal
○ Cannot be explained by current understanding of 

Normal
■ Example: At CERN physicists require 

explanation for event 5 or more standard 
deviations outside current model

● Anomaly Detection requires an implicit 
understanding of “Normal”

● Prob[x is Anomaly] = 1 - Prob[x is Normal]
● Normal is explained simply



Autoencoders for Anomaly Detection

● Latent dimension as “simple” 
explanation of data

● Anomalous data not well 
explained or reconstructed

● Autoencoders are a component 
of many state-of-the-art systems



Techniques for Time-Series Anomaly Detection

● Reconstruction
● Forecasting

○ Assumptions and Statistics Based
○ Learning Based

● Generative
● Combinations and Variations

○ Combine multiple techniques
○ Vary pre-processing, post-processing and loss



Weighted Window to improve event precision



Normalization to Account for Distribution Shift



Time-series Anomaly Detection data and Metric

● Numenta Anomaly Benchmark, Yahoo, NASA
● F1 = 

○  
● Time Series F1

○ Unfortunate lack of standardization
○ Overlapping windows?
○ Is time step event or a whole anomaly?
○ We use F1 scoring function of TADGAN



Results



Neural Networks for Lossy Image Compression

● Encode an image to a compressed form
● Decode to reconstruct similar image
● Traditional approaches

○ Wavelets, Fourier Transforms, Color Depth Projection, etc.
● Deep learning approaches

○ Autoencoders
○ Sinusoidal Representation Networks (SIRENs)



Neural Networks can Store Images

● Consider signals, images, videos, or 3D scenes as functions of space and 
time coordinates

● Train to learn function of image



Compressed Implicit Neural representation

● Use SIREN’s to 
compress image and 
send quantized weights 
instead of image

● Benefits over 
reconstruction-based 
approach

○ Small model size
○ Gives concept of 

‘efficiency’ of neural 
network



Block-Sparse Matrices

● Theory: Sparse NNs are more efficient per weight
● Set sparsity before training instead of after
● Block-sparse structure more efficient
● Experiment: Do block-sparse weights perform 

better per weight than full matrices for image 
compression?



Rate Distortion Plot



Outlook

● Entropy coding, more complete quantization analysis
● Regularization combined with delta coding on the blocks
● Preprocessing images



In Conclusion

● Minimalism in deep learning allows for the expansion of deep learning 
applications through improved efficiency

● Minimalism in deep learning is a broad topic, in this talk we explored:
○ Minimizing number of input measurements for side-channel analysis
○ Minimizing number of nodes in general purpose neural networks
○ Using autoencoders for unsupervised, general purpose, and highly performant time-series 

anomaly detection
○ Improving an exciting new approach to image compression,  and offering insight into a 

technique which could have broader implications to network efficiency


