
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

MINIMALISM IN DEEP LEARNING

by

LOUIS JENSEN

B.S., University of Notre Dame, 2017
M.S., Boston University, 2020

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

© 2021 by
LOUIS JENSEN
All rights reserved

Approved by

First Reader

Peter Chin, PhD
Research Professor of Computer Science

Second Reader

George Kollios, PhD
Professor of Computer Science

Third Reader

Bryan Plummer, PhD
Assistant Professor of Computer Science

Fourth Reader

Steve Homer, PhD
Professor of Computer Science

Acknowledgments

Thank you to my adviser, Dr. Peter Chin, who guided my research. Thank you to

my professors, who shared with me their knowledge. Thank you to my parents, who

shaped me as a person.

A special thanks to Professors Steve Homer, George Kollios, Bryan Plummer, and

Derry Wijaya for serving as my dissertation committee. A special thanks also to

fellow PhD candidates Ryan, Trung, Peilun, Hieu, and Xiao for providing me helpful

feedback on my dissertation document.

Louis Jensen

PhD Candidate

Computer Science Department

iv

MINIMALISM IN DEEP LEARNING

LOUIS JENSEN

Boston University Graduate School of Arts and Sciences, 2021

Major Professor: Peter Chin, PhD
Research Professor of Computer Science

ABSTRACT

As deep learning continues to push the boundaries with applications previously

thought impossible, it has become more important than ever to reduce the associated

resource costs. Data is not always abundant, labelling costs valuable human time, and

deep models are demanding of computer hardware. In this dissertation, I will examine

questions of minimalism in deep learning. I will show that deep learning can learn

with fewer measurements, fewer weights, and less information. With minimalism,

deep learning can become even more ubiquitous, succeeding in more applications and

on more everyday devices.

v

Contents

1 Introduction 1

2 Deep Learning for Minimal-Context Block Tracking through Side-

Channel Analysis 4

2.1 Abstract . 4

2.2 Introduction . 4

2.3 Related Works . 6

2.4 Data Collection . 7

2.5 Methods . 8

2.5.1 Data Processing . 8

2.5.2 Deep Learning Model Architecture 9

2.6 Experimental Results . 11

2.7 Chapter Conclusion . 13

3 NodeDrop: A Method for Finding Sufficient Network Architecture

Size with Improved Generalization 14

3.1 Abstract . 14

3.2 Introduction . 14

3.3 Related Works . 16

3.3.1 Pruning . 16

3.3.2 Regularization . 17

vi

3.3.3 Other approaches . 18

3.4 Experiments . 18

3.4.1 MNIST Experiments . 21

3.4.2 CIFAR10 and CIFAR100 Experiments 24

3.5 Conclusion and Outlook . 27

4 How Dense Autoencoders can still Achieve the State-of-the-art in

Time-Series Anomaly Detection 28

4.1 Abstract . 28

4.2 Introduction . 29

4.3 Related Works . 31

4.3.1 Forecasting Techniques . 31

4.3.2 Reconstruction Techniques . 32

4.3.3 Distribution Based Techniques 34

4.4 Methods . 35

4.4.1 Why a Weighted Sum? . 36

4.4.2 Why Normalization? . 37

4.4.3 Delay Improves Results . 37

4.4.4 Putting it all Together . 39

4.5 Experiments . 40

4.5.1 Datasets . 40

4.5.2 Measuring Performance . 40

4.5.3 Results . 42

4.6 Conclusion . 42

5 Using Block Sparse Weights with Compressed Implicit Neural

Representation Networks 44

vii

5.1 Abstract . 44

5.2 Introduction . 44

5.3 Related Work . 45

5.4 Background and Methods . 46

5.5 Experiment . 47

5.6 Outlook . 49

6 Conclusions 50

6.1 Conclusion . 50

References 53

Curriculum Vitae 60

viii

List of Tables

2.1 Classification accuracy for each model’s performance on the distinct

test sets. 13

3.1 MNIST Network Architectures: Number of Features by Layer 18

3.2 Cifar10 Classification Results . 22

3.3 Cifar100 Classification Results . 23

3.4 ImageNet Classification Results . 23

4.1 Experimental Results, F1 scores . 38

4.2 Experimental Results, F1 scores . 38

ix

List of Figures

2·1 The two-channel data collection setup measures power consumption

and EM radiation at 500 MHz. 7

2·2 Example trace and correct block type classifications for each time sam-

ple. The colors in the figure on the right represent different block

classes at those time samples. Note that only a fraction of a complete

program trace is shown above . 9

2·3 Our combined CNN and GRU architecture learns basic signal features

in the lower layers and combines these features across time using a

gated recurrent unit. This architecture classified block types with high

accuracy across many different window sizes. 10

2·4 Classification accuracy across various window sizes and distances. Note

how accuracy plateaus above a window size of 128 samples. We esti-

mate this window size as the minimum context required for block-type

classification—equivalent to approximately four clock cycles. 12

x

3·1 In the right and center figures, the λ parameter values plotted on the

y-axis are on a logarithmic scale. We note that the performance and

parameter reduction both maintain desirable levels for a large range

of λ values (over several orders of magnitude). This indicates the ease

of tuning the NodeDrop technique. In the leftmost figure, networks of

different starting size converge to nearly the same size for a given λ.

The dashed diagonal line represents networks without pruning. Note

that increased initialization size has a slight effect on final size, as

indicated by the slight upward slopes. This effect is greater for larger λ. 19

3·2 Results on CIFAR10 for VGG with and without Batch Normaliza-

tion over a spread of λ choices. Top Left: Classification error for VGG

without Batch Normalization. Top Right: Final parameters after train-

ing using NodeDrop. Bottom Left: Classification error for VGG with

Batch Normalization. Bottom Right: Final parameters after training

using NodeDrop-BN. For both NodeDrop and NodeDrop-BN, a range

of λ values are acceptable. Baseline accuracy and network size is indi-

cated by the dashed lines. 20

3·3 Accuracy stabilizes after less than 100 epochs in this CIFAR10 run,

indicating the NodeDrop technique does not delay performance con-

vergence. Training for another 400 epochs helps maximize parameter

reduction. 21

xi

4·1 Without any post-processing, a sliding window over the data (1st plot)

will yield a high anomaly score for any window in which the anomaly

is overlapping, resulting in wide regions of high predicted anomaly

scores (2nd plot). This is undesirable behavior, especially when two

anomalies appear in rapid succession, as these anomalies will not be

distinguished from each other by a threshold. If anomaly scores are

calculated by weighted sum (3rd plot) over the sliding window instead

of a simple sum, anomalies can easily be distinguished. This data was

synthetically created with two spike anomalies to best illustrate this

concept. 33

4·2 Noise levels may also change suddenly in a time series (1st plot). Using

normalization (3rd plot) again improves anomaly scoring when com-

pared with no normalization (2nd plot). With normalization a range

of thresholds are able to be selected that will still yield good results. . 35

5·1 The block sparse version of COIN’s rate-distortion curve marginally

outperforms COIN’s rate-distortion curve. Both curves are not yet

competitive with the state-of-the-art deep learning approachs or pop-

ular codecs except for JPEG. 48

xii

List of Abbreviations

AD Anomaly Detection

AE autoencoder

ARIMA AutoRegressive Integrated Moving Average

AUC Area-under-curve

AWS Amazon Web Services

BMS Balle, Minnen, Singh

BN Batch normalization

BPG Better Portable Graphics

BPP Bits per Pixel

CIFAR10 Canadian Institute for Advanced Research 10 Class
Dataset

CIFAR100 Canadian Institute for Advanced Research 100
Class Dataset

CNN Convolutional Neural Network

COIN Compressed Implicit Neural representation

CST Cheng, Sun, Takeuchi

DNN Deep Neural Network

EM Electromagnetic

F1 F-score

FN False Negatives

FP False Positives

GAN Generative Adversarial Network

GAT Graph Attention Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

xiii

HTM Hierarchical Temporal Memory

JPEG Joint Photographic Experts Group codec

LSTM long-short term memory

MBT Minnen, Balle, Toderici

MHz megahertz

MNIST Modified National Institute of Standards and Tech-
nology database

MSL Mars Science Laboratory rover

MTAD-GAT Multivariate Time-series Anomaly Detection
Graph Attention Network

NAB Numenta Anomaly Benchmark

NASA National Aeronautics and Space Administration

PSNR Peak Signal to Noise Ratio

RAM Random Access Memory

RGB Red, Green, Blue

RNN Recurrent Neural Network

SIREN Sinusoidal Representation Networks

SMAP Soil Moisture Active Passive satellite

TADGAN Time-series Anomaly Detection Generative Adver-
sarial Network

TN True Negatives

TP True positives

VAE variational autoencoder

VEEGAN Variational Encoder Enhancement to Generative
Adversarial Networks

VGG Visual Geometry Group

VRAM Video Random Access Memory

VTM VVC Test Model

xiv

1

Chapter 1

Introduction

In the last decade, deep learning has revolutionized how we use computers to solve

problems. The improved capability of computer hardware and the increased abun-

dance of data made possible the meteoric rise of deep learning where before previous

limitations had made widespread application impossible. Despite its meteoric rise,

deep learning continues to be limited by its demands for heaping data and advanced

hardware. Neural networks need training information to learn from, random access

memory (RAM) to process the information in its models, and internet bandwidth to

transmit the information of its models. In this dissertation I will examine questions

of minimalism in deep learning. If deep learning can succeed with less, then deep

learning can succeed at more.

There are many different types of information minimalism that are important in

the advance of deep learning, and there exists a wealth of literature exploring these

topics.

I will look at minimal information requirements, and mechanisms to encourage

minimal information in deep learning. My research examines four different aspects of

information minimalism in deep learning found in four unique application contexts.

In chapter two we study the application of neural networks to side-channel signal

analysis. We trained a deep learning model to classify what type of program block

was executed on a processor using only measurements of the processor’s power drain

and electromagnetic radiation. In particular, we determined the minimal number of

2

measurements required to classify program block types, showing that measurements

over a span of only four instruction cycles were sufficient to distinguish block types

for our experimental set up.

In chapter three I propose the NodeDrop technique for minimizing the architec-

ture size of neural networks. NodeDrop is experimentally demonstrated to be an

effective mechanism for reducing the size of neural networks. NodeDrop also offers

a theoretically proved guarantee that the network output will not be affected by its

pruning at the end of training. This guarantee allows the network to adjust to changes

in architecture continuously during training. The NodeDrop technique reduced the

number of parameters in a VGG-like network by a factor of 114x while maintaining

classification accuracy on the CIFAR10 benchmark.

Chapter four offers an autoencoder-based approach to time-series anomaly detec-

tion. The autoencoder reconstructs windows of time-series data from its latent di-

mension, learning to encode and decode frequent patterns appearing in data. When

an anomaly occurs, the autoencoder struggles to reconstruct the anomalous data

because it does not conform to learned patterns. The autoencoder relies on reduc-

ing information to a bottleneck at the latent dimension in order to fit only frequent

patterns of data.

Chapter five gives a perspective on using neural networks to compress image data.

We show how to use structured sparsity in neural networks to build upon recent work

with neural representations [Dupont et al., 2021]. We show that adding structured

sparsity to Dupont’s technique is able to improve image compression ratio with main-

tained signal preservation.

All of these chapters address issues of minimal information in deep learning. This

dissertation does not address all aspects of minimalism in deep learning, nor does it

address information theory. Instead, this dissertation experimentally probes minimal

3

information for deep learning in four diverse applications.

4

Chapter 2

Deep Learning for Minimal-Context Block

Tracking through Side-Channel Analysis

2.1 Abstract

It is well known that electromagnetic and power side-channel attacks allow extraction

of unintended information from a computer processor. However, little work has been

done to quantify how small a sample is needed in order to glean meaningful infor-

mation about a program’s execution. This paper quantifies this minimum context by

training a deeplearning model to track and classify program block types given small

windows of side-channel data. We show that a window containing approximately four

clock cycles suffices to predict block type with our experimental setup. This implies

a high degree of information leakage through side channels, allowing for the external

monitoring of embedded systems and Internet of Things devices.

2.2 Introduction

Computer processors consume power and emit low energy electromagnetic (EM) radi-

ation according to the currents in their transistors and circuitry. Side-channel attacks

utilize this unintended, external information to infer the current state of the processor.

These attacks were first used to break cryptographic systems by analyzing the timing

of processes to gain information about security keys [Kocher, 1996]. Since then, ad-

ditional studies have demonstrated that power [Kocher et al., 1999], sound [Genkin

5

et al., 2013], temperature [Hutter and Schmidt, 2014], and EM [Agrawal et al., 2003]

outputs can all lead to viable side-channel attacks.

Side-channel attacks are frequently aimed at extracting private cryptographic se-

crets. Information from side channels can also be used in less malicious ways. As a de-

fensive measure, analysis of side-channel signals can be used to classify machine states

for malfunction detection. This is especially important on embedded systems, which

are becoming more common in dedicated Internet of Things applications. Because of

the specialized nature of these systems, they are frequently low in memory and pro-

cessor power. As a result, traditional defensive methods such as on-device malware

detection and self-monitoring are infeasible for ensuring security and maintenance.

However, external malware detection and monitoring for these small systems can be

achieved through side-channel analysis. Ideally, a monitoring system could detect

both whether and when any deviation from a program’s normal execution occurred.

This requires a monitoring system to be able to track program execution.

A program’s execution can be viewed as consisting of basic blocks separated by

control flow, with each basic block containing a portion of assembly level instructions

within which no branch or jump occurs. As a first step towards the monitoring of em-

bedded systems, we aim to use side-channel analysis to track a program’s sequence of

basic blocks. We measure both the power consumption and EM radiation surrounding

the target device, and then use a convolutional neural network (CNN) to segment the

measured EM signals according to labelled block types at each observed time sample.

In particular, we aim to show that these block types can be classified after observing

side channels for only a very small number of clock cycles—showing that even these

small windows of side-channel data still carry relevant leaked information.

6

2.3 Related Works

Problems in side-channel analysis include cryptanalysis, program-level classification,

block-level tracking, and instruction level tracking. Many papers have demonstrated

the ability of machine learning algorithms to tackle these problems through EM and

power side channels [Riley et al., 2018,Maghrebi et al., 2016,Prouff et al., 2018,Wang

et al., 2018, Hospodar et al., 2011, Liu et al., 2016]. Support vector machines have

successfully been used for both cryptanalysis [Maghrebi et al., 2016,Hospodar et al.,

2011] and program classification [Riley et al., 2018]. A handcrafted machine learning

algorithm based on hidden Markov models has also been successfully applied to the

sequencing of program execution at the instruction level [Liu et al., 2016].

Deep learning models have also been repeatedly demonstrated to successfully an-

alyze the EM and power side channels. CNN models are frequently used for side-

channel cryptanalysis [Maghrebi et al., 2016,Prouff et al., 2018], and recurrent neural

network (RNN) models have also been used for cryptanalysis [Maghrebi et al., 2016].

We build upon the success of CNN and RNN models in this domain in order to

implement our block-tracking model.

Deep learning models have been used less frequently for applications of side-

channel analysis outside of cryptanalysis. A multilayer perceptron model was used for

program classification [Wang et al., 2018] with good results. That model analyzed the

same experimental traces we analyze in this paper, but used program labels instead

of the block labels we use to approach the more difficult problem of block tracking.

As side-channel analysis becomes a topic of growing interest, these applications of

machine and deep learning techniques have achieved many important results in this

domain. To the best of the authors’ knowledge, none of these works have explored

the minimum bounds of context needed for analysis. The capacity of the EM and

power side channels has been studied in specific cases designed to understand the

7

most vulnerable instructions [Yilmaz et al., 2018, Zajic and Prvulovic, 2014, Callan

et al., 2014]. Instead of focusing on specific components of the program, we test

the minimum required context for block tracking across programs similar to those in

real-world applications.

2.4 Data Collection

Figure 2·1: The two-channel data collection setup measures power
consumption and EM radiation at 500 MHz.

Our data was generated on an Arduino Mega 2560 processor, which has a clock

speed of 16 MHz. The time samples were measured at a rate of 500 MHz—providing

roughly 31 samples per instruction. The samples were gathered on a PicoScope 6405,

with each time sample containing two simultaneous measurements: power consump-

tion and EM radiation. We measure power consumption by measuring direct current

drain from the power source, and EM radiation by measuring the magnetic field

8

strengths. The direct current measurements were taken via an ETS-Lindgren 94430

Split-Core Current Transformer. For distance measurements, the magnetic field was

measured via an Aaronia MDF 9400 broadband magnetic field tracking antenna. For

close measurements, a custom version of Beehive’s 100A EMC Probe was pressed to

the top of the processor.

Experiments were run under four different physical setups to test signal degrada-

tion over increasing distances. The “ideal” 0” samples were gathered with a magnetic

probe directly on the processor and the current transformer placed after the power

regulator. The 4”, 8”, and 12” measurements were gathered with the magnetic an-

tenna at those distances from the processor. For these measurements, the current

transformer was at a single fixed location before the regulator on the main power

connector.

Signals were measured for two different programs: math and bit-toggle. The math

program repeatedly generates random numbers and was labelled with five block types:

write-low, write-high, random number seed, random number generation, and loop.

The bit-toggle program repeatedly flips the register between 0x00000000 and

0xffffffff. It was labeled with three block types: write-low, write-high, and loop.

2.5 Methods

2.5.1 Data Processing

During data collection we extracted the raw data as signal traces. Each time step of

the traces was then labelled by block type using the program execution, i.e. write-

low, write-high, etc. We first separated the data according to the 0”, 4”, 8”, and

12” distances used in our data collection setups. We then subsequently separated the

traces in each of these datasets into a training set of 2800 traces and a testing set of 180

traces. Each math program trace contained approximately 57,000 labeled samples and

9

Figure 2·2: Example trace and correct block type classifications for
each time sample. The colors in the figure on the right represent dif-
ferent block classes at those time samples. Note that only a fraction of
a complete program trace is shown above

each toggle program trace contained approximately 9,000 samples. During training,

we randomly sampled windows from the training traces with a bias to balance an

unbalanced label distribution. For testing, we sampled without bias.

In order to find the minimal context required for block tracking, we broke the

traces into windows of varying length. We tested our models with window sizes of

48, 64, 96, 128, 192, and 256 samples in length. Most windows were contained in a

single block type. For the windows in transitions between block types, labels were

proportional to the number of samples from each block.

2.5.2 Deep Learning Model Architecture

In the past several years, deep learning has achieved remarkable results in domains

where data is plentiful and rich in structure [Goodfellow et al., 2016]. These domains

include signal, image, and video processing. For signal processing, one-dimensional

CNNs have proven very effective for extracting important signal features. Originally

applied to images, CNNs learn layers of filters that are convolved with the input,

10

Figure 2·3: Our combined CNN and GRU architecture learns basic
signal features in the lower layers and combines these features across
time using a gated recurrent unit. This architecture classified block
types with high accuracy across many different window sizes.

11

and then use the output of these repeated convolutions for classification or encoding.

Another powerful deep learning model is the RNN, which operates sequentially on

data while updating a hidden “memory” state. This hidden state allows the RNN to

relate features across time. One successful RNN technique for handling the memory

update is the gated recurrent unit (GRU) [Cho et al., 2014].

Our model architecture is shown in Figure 3. It consists of four convolution layers,

a single GRU layer, and a final fully-connected layer. Inputs are processed by the

convolution layers, generating basic signal features. We use convolution strides of

length two instead of max-pooling in order to reduce dimension. The GRU layer

then runs over the output of the convolution layers. The output of the GRU layer

is then passed into the fully-connected layer which outputs a block classification.

We utilized exponential linear unit activation functions [Clevert et al., 2015] on each

layer except for the output layer, which uses a softmax to produce the classification.

We implemented batch normalization [Ioffe and Szegedy, 2015a] on each layer and

included dropout [Srivastava et al., 2014] on the four last layers to combat overfitting

on the training data. Models for each dataset and window size were trained from

random initialization using the Keras framework [Chollet et al., 2015] and optimized

using the Adam optimizer [Kingma and Ba, 2014]. Each model was trained until a

pre-determined stopping epoch, sufficient to ensure model convergence.

In our tests this model outperformed both models using a pure RNN applied

to a spectrogram and models using fully-connected layers applied to the frequency

domain. We trained an independent model for each window size and distance.

2.6 Experimental Results

We trained neural networks to perform block-type classification with different win-

dow sizes for the math program. The testing results of our models trained on the

12

Figure 2·4: Classification accuracy across various window sizes and
distances. Note how accuracy plateaus above a window size of 128
samples. We estimate this window size as the minimum context re-
quired for block-type classification—equivalent to approximately four
clock cycles.

math datasets are plotted in Figure 4 for all window sizes and distances. We were

pleased that our model achieved high classification accuracy for multiple window sizes.

However, we noted that the smallest window sizes resulted in a noticeable decrease in

classification accuracy. We used this drop in accuracy to estimate a minimum window

length in which the windowed data still carries sufficient information to consistently

classify block types. From our results, we estimated this minimum to be 128 sample

windows, equivalent to approximately four clock cycles or 256 ns in our experiment

setup.

We proceeded to verify this chosen window size using the bit-toggle program. We

applied the 128 sample window size to the 0”, 4”, 8”, and 12” bit-toggle measure-

ments. We found that our model again achieved high accuracy on the bit-toggle

program. This verifies that the 128 sample window transfers well to new program ex-

ecutions in the same experimental setup. Both the math and toggle program results

are found in Table 2.1.

13

Distance
Program Window 0” 4” 8” 12”

Math 48 87.9 90.1 93.0 90.9
64 91.5 92.2 95.5 92.5
96 95.0 98.4 98.4 97.5
128 99.2 99.4 99.7 99.0
192 99.9 99.7 99.7 99.8
256 99.6 99.4 99.5 99.5

Toggle 128 99.7 98.3 100 99.7

Table 2.1: Classification accuracy for each model’s performance on
the distinct test sets.

We did not observe any meaningful relationship between accuracy and measure-

ment distance. This suggests that the measurement noise in this distance regime is

negligible in comparison to the signal.

2.7 Chapter Conclusion

In this paper we empirically estimate an upper bound for the minimum window

context required to carry information for predicting block type. With experimental

setups measuring from multiple distances, we achieve a high block-type classification

testing accuracy, over 99 percent, using a window context of four clock cycles. Our

results can help to estimate baseline window sizes for different experimental setups

than ours (e.g. different processors, sampling rates, distances, etc.).

Many directions remain in which to extend this research. The fine-grained clas-

sification of individual blocks directly supports program-level classification. Like all

supervised classification, this work is limited by the need for labelled datasets. In

the future, we plan to employ unsupervised learning techniques to detect anomalies

without training on explicitly-labelled datasets. We hope to recognize deviations from

desired program execution such as malware or malfunction. In particular, we hope to

both identify anomalies in program execution and, using the window size determined

in this work, identify when in program execution these anomalies occur.

14

Chapter 3

NodeDrop: A Method for Finding

Sufficient Network Architecture Size with

Improved Generalization

3.1 Abstract

Determining an appropriate number of features for each layer in a neural network

is an important and difficult task. This task is especially important in applications

on systems with limited memory or processing power. Many current approaches to

reduce network size either utilize iterative procedures, which can extend training time

significantly, or require very careful tuning of algorithm parameters to achieve rea-

sonable results. In this paper we propose NodeDrop, a new method for eliminating

features in a network. With NodeDrop, we define a condition to identify and guar-

antee which nodes carry no information, and then use regularization to encourage

nodes to meet this condition. We find that NodeDrop drastically reduces the number

of features in a network while maintaining high performance, reducing the number of

parameters by a factor of 114x for a VGG like network on CIFAR10 without a drop

in accuracy.

3.2 Introduction

A prime difficulty in neural network design is the appropriate tuning of network archi-

tectures. Choosing a size for each layer of a neural network is usually done by rough

15

estimate, trial, and error. This imprecise process can often lead to network designs

larger than needed to perform a particular task. Although the capacity for training

large and complex networks grows with improving graphics processing unit (GPU)

technology, designing too large a network can result in applications impracticable for

general hardware use. Mobile devices and embedded systems limit compute, mem-

ory, and storage consumption, and as a result can only run small, minimally designed

networks. A designer aiming to create such a minimal network is faced with the

time-consuming task of manually tuning the number of neurons in each layer. This

tuning process can result in many extended tuning experiments in order to balance

the space and performance of the neural network.

The issues involved with using deep neural networks (DNN’s) on constrained sys-

tems has inspired significant research. One interesting area of research is the design

of systems which can automatically prune a network’s parameters. Ideally these

techniques can still maintain high performance while pruning as many parameters

as possible, ensuring the network can fit on smaller systems. Many state-of-the-art

methods for network pruning generally involve an iterative process of repeatedly paus-

ing training, pruning parameters, and resuming training in order for the network to

reconverge. Such iterative procedures can lead to long training times. Other tech-

niques use regularization in order to eliminate nodes. The final performance of these

networks are often highly variable with the hyper-parameters of the algorithm. Thus,

while these techniques do offer parameter reduction benefits, the network designer will

still be faced with similar difficulties as before: a time consuming training process

and a potential hyper-parameter tuning headache.

We address the problem of parameter reduction with our novel NodeDrop tech-

nique, which prunes the network during training. The NodeDrop technique only

drops nodes which carry no information and drops them fluidly during the training

16

process.

First, we formally define the conditions necessary to guarantee a neuron carries

no information. We then propose a simple variant of L1 regularization which drives

nodes toward this condition. Second, we extend the NodeDrop technique to networks

which use batch normalization [Ioffe and Szegedy, 2015b]. We test our technique on

modern architectures for the MNIST, CIFAR10, and CIFAR100 datasets, and show

that we are able to drop a significant number of nodes without a loss in performance.

Our method requires no iterative retraining and only a modest increase in training

time. We demonstrate effective results with a wide range of hyperparamaters, in-

dicating our method does not require precise hyperparameter tuning. At best case

we produce a network which reduces the number of parameters by 93.27, 99.12, and

87.82 percent for MNIST, CIFAR10, and CIFAR100 respectively, with no perceivable

loss in performance.

3.3 Related Works

3.3.1 Pruning

Network pruning comprises a set of techniques which take a pretrained network and

then prune off connections using some heuristic. This is usually followed by a re-

training of the network and sometimes by an iterative process of pruning and re-

training the network several times. Pruning techniques first appeared in the 1990s,

with the first instances using second order gradients of connections to determine

which neurons should be pruned [Hassibi and Stork, 1993, LeCun et al., 1990, Reed,

1993]. More recent approaches have taken on a wide array of methods for determin-

ing which connections should be pruned. These approaches include correlation [Sun

et al., 2015, Han et al., 2016, Srinivas and Babu, 2015], regularization [Han et al.,

2015, Li et al., 2017], particle filtering on misclassification rate [Anwar et al., 2017],

17

low rank approximation [Denton et al., 2014], vector quantization [Gong et al., 2014]

and tensor decomposition [Kim et al., 2015].

All network pruning techniques suffer from extended training time due to the

iterative retraining of the network. This can lengthen training times significantly,

and often makes tuning the various parameters in each method a lengthy chore.

3.3.2 Regularization

A more recently developed approach to network parameter reduction is to disable

parameters through regularization. A majority of these techniques have focused on

the sparsification of network connections using a group sparsity approach [Wen et al.,

2016, Zhou et al., 2016, Alvarez and Salzmann, 2016, Lebedev and Lempitsky, 2016].

This involves grouping the weights for every neuron and attempting to sparsify each

group by penalizing its L2 norm. These techniques require all weights to be driven

to zero before a node can be guaranteed to carry no information. In practice nodes

are removed based on a threshold since this guarantee is difficult to meet. Because of

this, regularization methods can be difficult to use as they require very precise tuning

of the regularization and threshold terms.

The most similar technique to ours, Liu et al. [Liu et al., 2017], uses L1 regular-

ization to drive the scale parameter in batch norm, γ, towards zero. This is similar

in principle to our own experiments with batch norm. However, Liu et al. requires

retraining after pruning in order to reconverge. We provide a more absolute condition

to guarantee a node is off, eliminating the need for a retraining procedure and making

node removal a more fluid process.

Our technique falls within the regularization category. Key differences in our

approach involve special regularization of the bias for each neuron and a condition

for node removal guaranteeing no effect on network output. Our condition is also

more relaxed, utilizing the “dead” region in a node’s activation function, instead of

18

Table 3.1: MNIST Network Architectures: Number of Features by
Layer

Network Name Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Conv2d Conv2d Conv2d Conv2d Dense Output

Maxpool Maxpool
Dense160 16 16 32 32 64 10
Dense240 24 24 48 48 96 10
Dense320 32 32 64 64 128 10
Dense480 48 48 96 96 192 10
Dense640 64 64 128 128 256 10

requiring the node’s weights to be zero.

3.3.3 Other approaches

Several other approaches have appeared which do not fit into the categories of the

previous two subsections. Many of these approaches focus on reducing precision

as opposed to reducing the number of parameters. [Hubara et al., 2016, Vanhoucke

et al., 2011,Gupta et al., 2015,Rastegari et al., 2016]. As such, these approaches are

largely orthogonal to our own work, and can be used in conjunction with our work

in order to compound the reduction on memory and computation. One example of

this approach is quantized and binarized neural networks [Hubara et al., 2016], which

take this approach to new levels by using {−1, 1} weights and an XOR to replace

multiplication.

An additional noteworthy paper is that of Molchanov et al. [Molchanov et al.,

2017]. They achieve impressive results by sparsifying a network’s connections during

training using variational dropout. Again, in theory this work should be usable in

conjunction with our own.

3.4 Experiments

Having established a theoretical basis for the NodeDrop condition and regulariza-

tion technique, we will now establish NodeDrop’s practical viability as a method for

19

Figure 3·1: In the right and center figures, the λ parameter values
plotted on the y-axis are on a logarithmic scale. We note that the
performance and parameter reduction both maintain desirable levels
for a large range of λ values (over several orders of magnitude). This
indicates the ease of tuning the NodeDrop technique. In the leftmost
figure, networks of different starting size converge to nearly the same
size for a given λ. The dashed diagonal line represents networks without
pruning. Note that increased initialization size has a slight effect on
final size, as indicated by the slight upward slopes. This effect is greater
for larger λ.

shrinking networks. The NodeDrop technique requires two hyperparameters: C and

λ. The C value is unimportant, and can be set to almost any positive value without

impacting results or parameter reduction. However, the λ parameter is crucial in de-

termining the balance between learning the objective and dropping nodes. Therefore,

we closely examine the effect that choosing different λ values has on both network

performance and parameter reduction. We test many λ values on the MNIST and

CIFAR10 datasets. We also test a few λ values on the CIFAR100 dataset.

The network initalization size should affect the number of nodes dropped. We

show that if a network starts near optimal size, NodeDrop will maintain accuracy

and only drop what few nodes it can. Furthermore, we show that if a network

is grossly oversized at initialization, NodeDrop will drop many nodes and converge

towards the same size as a smaller network initialization. This result is desirable, as

20

Figure 3·2: Results on CIFAR10 for VGG with and without Batch
Normalization over a spread of λ choices. Top Left: Classification error
for VGG without Batch Normalization. Top Right: Final parameters
after training using NodeDrop. Bottom Left: Classification error for
VGG with Batch Normalization. Bottom Right: Final parameters after
training using NodeDrop-BN. For both NodeDrop and NodeDrop-BN,
a range of λ values are acceptable. Baseline accuracy and network size
is indicated by the dashed lines.

it demonstrates NodeDrop is largely unaffected by poor layer size choices. NodeDrop

uses λ to determine the balance between performance and number of nodes utilized.

Therefore, a network architect using NodeDrop can afford to initialize a large network,

and remain confident that NodeDrop will eliminate needless nodes. Using the MNIST

dataset, we demonstrate this ability by showing that networks will converge to the

same size from multiple initialization sizes, for a fixed λ.

Many pruning methods require an increase in training time to be effective. The

NodeDrop technique does not delay performance or accuracy convergence, but in

order to allow the number of network nodes to converge, one must train for a longer

time. We examine the training time required for this convergence with experiments

on the CIFAR10 datasets.

Most importantly we test to ensure NodeDrop maintains performance and effec-

tively drops nodes. We find that NodeDrop regularization does not affect a network’s

performance for a large swath of λ values, only reducing testing accuracy if extreme

21

Figure 3·3: Accuracy stabilizes after less than 100 epochs in this
CIFAR10 run, indicating the NodeDrop technique does not delay per-
formance convergence. Training for another 400 epochs helps maximize
parameter reduction.

λ values are chosen.

Furthermore, we demonstrate that NodeDrop is able to drop more than 100x pa-

rameters from popular networks such as VGG16, while continuing to maintain classi-

fication accuracy on the CIFAR10 dataset. We test NodeDrop network performance

and parameter reduction on MNIST, CIFAR10, and CIFAR100.

3.4.1 MNIST Experiments

The MNIST dataset [LeCun and Cortes, 1998] provides an opportunity to perform

a large number of experiments because of the datasets rapid accuracy convergence.

Thus, we used this dataset to sweep across λ values for five differently sized, but

otherwise similar, network architectures, as shown in table 3.1. We demonstrate

NodeDrop’s ability to rapidly converge to similarly sized networks from different

22

Table 3.2: Cifar10 Classification Results

Network λ Error Params Prune % Factor Nodes Prune %

VGG 16

Baseline 13.01 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 14.14 0.45M 97.00 33.28 1115 76.46
1.0× 10−5 13.27 0.31M 97.96 48.98 859 81.9

w/o BN 3.2× 10−5 13.76 0.13M 99.12 114.00 612 87.08
1.0× 10−4 90.00 0.0M 100.0 - 0 100.0

VGG 16

Baseline 6.50 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 6.88 8.88M 40.7 1.69 3624 23.48
1.0× 10−5 7.36 1.39M 90.75 10.81 1164 75.42
3.2× 10−5 7.41 0.61M 95.96 24.76 751 84.14
1.0× 10−4 20.16 0.10M 99.35 152.84 308 93.50

DenseNet40
Baseline 14.94 1.04M 0.0 1.0 456 0.0
1.0× 10−6 15.21 0.66M 35.69 1.55 363 20.39

w/o BN 1.0× 10−5 14.74 0.41M 60.47 2.54 291 36.18
1.0× 10−4 14.99 0.08M 91.96 12.43 154 66.22

DenseNet40
Baseline 6.80 1.05M 0.0 1.0 456 0.0
1.0× 10−6 7.13 0.99M 4.19 1.04 447 1.97
1.0× 10−5 6.75 0.98M 5.67 1.06 443 2.85
1.0× 10−4 7.79 0.55M 47.12 1.89 333 26.73

starting sizes.

For all MNIST experiments we used a simple network design: four convolution

layers and a single fully connected layer. We used 3x3 filters in all convolution layers,

and performed max-pooling after every second convolution layer. We varied the

width of the layers in order to test the effects of changing network initialization

size. We did not investigate the effects of changing network depth, but suspect that

prudent selection of network depth remains important. The network architectures are

described in table 3.1. The following consistent hyperparameters were used across all

MNIST runs: learning rate = 1.0× 10−3, batch size = 1024, optimizer = Adam, loss

function = cross entropy, epochs = 480.

Choosing Lambda

Choosing an appropriate value for the NodeDrop’s λ parameter remains an important

task. In order to prove that the NodeDrop technique remains robust for many selec-

23

Table 3.3: Cifar100 Classification Results

Network λ Error Params Prune % Factor Nodes Prune %

VGG 16 Baseline 27.65 15.04M 0.0 1.0 4736 0.0
1.0× 10−6 27.69 9.78M 34.99 1.54 3914 17.35
1.0× 10−5 28.04 1.83M 87.82 8.21 1623 65.73
1.0× 10−4 38.49 0.46M 96.93 32.58 729 84.6

DenseNet40
Baseline 26.5 1.05M 0.0 1.0 456 0.0
1.0× 10−6 26.92 1.05M 2.27 1.02 451 1.09
1.0× 10−5 27.01 1.03M 4.74 1.05 445 2.41
1.0× 10−4 29.38 0.744M 31.12 1.45 376 17.54

Table 3.4: ImageNet Classification Results

Network λ Error Params Prune % Factor Nodes Prune %

VGG 19 Baseline 33.79 143.65M 0.0 1.0 14696 0.0
1.0× 10−5 34.85 23.75M 83.47 6.05 6670 54.61

tions of λ, we tested five different network initialization sizes to observe differences

in convergence across λ values. The network architectures and hyperparameters are

discussed in section 3.4.1. We tested ten different λ values between λ = 1.0 × 10−8

and λ = 1.0× 10−3.

Our results indicate that easy tuning is a benefit of the NodeDrop technique. We

found that λ selections across orders of magnitude yielded desirable results, as shown

in figure 3.1. For λ > 10−4 we noticed a drop in MNIST accuracy, and for λ < 1.0×

10−7 we judged there to be a significant sacrifice in parameter reduction. Choosing

appropriate λ will always be dependent on both application and loss function. Because

of these MNIST experiments, we expect that the NodeDrop technique is robust for

a large range of λ selections. For a network designer using the popular cross-entropy

loss objective function, as we did, we would suggest λ = 1.0× 10−5.

24

Network Sizes

In the previous section (3.4.1) we experimentally observed that tuning the λ param-

eter of the NodeDrop technique should not cause a network designer grief. In this

section, we will experimentally observe that choosing initialization layer sizes should

also prove easy. We use the same experiments from the previous section (3.4.1), but

instead plot the effect of initializing with differently sized networks. This plot, shown

in figure 3.1, demonstrated that the NodeDrop technique will converge to a similar

“equilibrium” from many differently sized initialization networks. The size of the final

network is instead mostly dependent on λ. A network designer should err towards

too large a network in order to ensure desirable performance.

3.4.2 CIFAR10 and CIFAR100 Experiments

Dataset

The CIFAR dataset [Krizhevsky et al., 2009] consists of 32x32 colored natural images.

Both CIFAR10 and CIFAR100 are designed for classification, containing 10 and 100

classes respectively. There are 50, 000 training images and 10, 000 testing images for

both. We adopt a standard data augmentation scheme where the training images are

shifted and mirrored horizontally [He et al., 2016,Liu et al., 2017].

Architectures and Training

We implement our technique on two standard models, VGG [Simonyan and Zisser-

man, 2014] and DenseNet [Gao Huang, 2017]. Our VGG network is a slight variant

of the standard VGG16 model. We follow the standard modification of VGG for

CIFAR [Liu et al., 2017, Molchanov et al., 2017], by removing the three final fully

connected layers of size 4096 and instead using only a single fully connected layer of

size 512. We train the network using SGD with momentum of 0.9. The network is

trained for 200 epochs with an initial learning rate of 0.1 which is decayed by 0.1

25

at epochs 80 and 130. We tested both with and without batch normalization, and

discovered that batch normalization is necessary for the large VGG16 initialization

when applied to the more difficult CIFAR100 dataset. Therefore results without batch

normalization are excluded for CIFAR100.

For DenseNet we implement the standard DenseNet-40 given in the original paper

with L = 40 and k = 12. We train the model as per the original paper with SGD and

momentum 0.9. The network is trained for 300 epochs with an initial learning rate

of 0.1 and is decayed by 0.1 at epochs 150 and 225. As with VGG we found that the

CIFAR100 dataset required batch normalization, but we were again able to train a

variant on CIFAR10 without batch normalization.

Lambda Parameter Tests

As with the MNIST experiments, we tested a range of λ’s on CIFAR10 in order to

determine the choices which suit the network and dataset well. Furthermore, here

we test NodeDrop-BN, which was not tested in the MNIST experiments. Results for

VGG on CIFAR10 with varying choices of λ are shown in figure 3·2.

For the case without batch normalization our network maintains performance and

prunes a large number of nodes over many choices of λ. As with the MNIST case,

this suggests that choosing λ is relatively easy. All choices of λ ≤ 3.2× 10−5 achieved

high performance with significant pruning. For λ ≥ 1.0 × 10−4 the regularization

parameter proved too high, causing an entire layer to turn off, which in turn caused

the network to turn off all other layers.

For NodeDrop-BN, we find that λ ≤ 3.2 × 10−5 is appropriate for maintaining

performance. However, NodeDrop-BN requires more precise tuning than NodeDrop,

as only λ ≥ 3.2 × 10−6 achieved desirable parameter reduction. Based on the above

results we continue to recommend an initial lambda setting of λ = 1 × 10−5 for the

cross-entropy loss objective function.

26

Network Convergence Time

Sometimes it is important to avoid needlessly extending training time. In this section

we analyze NodeDrop’s effect on training time. Using λ = 10−5, we train a network

for 2000 epochs in order to observe network parameter and performance convergence

over time. This experiment used the VGG16 network without batch normalization on

the CIFAR10 dataset. Our results, shown in figure 3.3, indicate that while accuracy

convergence is not delayed by the NodeDrop technique, one will need to wait longer

to maximize NodeDrop’s parameter reduction.

Parameter Reduction

Results for CIFAR10 and CIFAR100 are given in tables 3.2 and 3.4 respectively. We

highlight the rows which provide the highest parameter reduction while maintaining

high accuracy.

For the VGG network we are able to drop a significant number of parameters

without degradation to the accuracy of the network. For NodeDrop-BN, we can

prune 95 percent of the parameters for CIFAR10 and 88 percent for CIFAR100. For

vanilla NodeDrop, we can prune 99 percent of the parameters on CIFAR10. This

suggests that VGG is a significantly oversized network for application to the CIFAR

datasets.

It is more difficult to prune nodes from the DenseNet architecture than for VGG.

We are only able to prune approximately 5 percent of the parameters from DenseNet

on CIFAR100. We believe this suggests that the DenseNet architecture is already

well sized for CIFAR100. DenseNet starts at around 1 million parameters, which is

close to the number of remaining parameters after our best case pruning of the VGG

network.

27

3.5 Conclusion and Outlook

In this paper, we proposed the novel NodeDrop technique for reducing parameters

in neural networks. The NodeDrop technique consists of a condition for identifying

nodes which are guaranteed to carry no information, and a regularization term to

encourage this condition to be met. We also propose a modified version of NodeDrop,

NodeDrop-BN, for use in networks with batch normalization. Experiments on the

MNIST and CIFAR10 datasets show that NodeDrop does not significantly increase

training time, and facilitates network design with the easily tuneable hyperparameter

λ. With experiments on MNIST, CIFAR10, and CIFAR100 datasets, using VGG16

and DenseNet architectures, we demonstrate that NodeDrop compares favorably with

other parameter reduction techniques. NodeDrop reduces the number of parameters

in a network by up to a factor of 114x. We hope that NodeDrop and NodeDrop-BN

will prove useful in neural network design, and will help to make the implementation

of neural networks on constrained systems more practical.

28

Chapter 4

How Dense Autoencoders can still

Achieve the State-of-the-art in

Time-Series Anomaly Detection

4.1 Abstract

Time series data has become ubiquitous in the modern era of data collection. With

the increase of these time series data streams, the demand for automatic time series

anomaly detection has also increased. Automatic monitoring of data allows engineers

to investigate only unusual behavior in their data streams. Despite this increase

in demand for automatic time series anomaly detection, many popular methods fail

to offer a general purpose solution. Some demand expensive labelling of anomalies,

others require the data to follow certain assumed patterns, some have long and un-

stable training, and many suffer from high rates of false alarms. In this paper we

demonstrate that simpler is often better, showing that a fully unsupervised multi-

layer perceptron autoencoder is able to outperform much more complicated models

with only a few critical improvements. We offer improvements to help distinguish

anomalous subsequences near to each other, and to distinguish anomalies even in the

midst of changing distributions of data. We compare our model with state-of-the-

art competitors on benchmark datasets sourced from NASA, Yahoo, and Numenta,

achieving improvements beyond competitive models in all three datasets.

29

4.2 Introduction

In recent years we have seen an increase in the amount of time series data. Much of

this time series data requires monitoring in order to determine whether the time series

system is behaving normally or anomalously. Systems are designed to account for

normal behavior, behavior that is well understood, but are not designed to account for

anomalies, portions of data not within the well understood range of normal behavior.

Therefore, it is desirable to design monitoring algorithms which will automatically

detect anomalous behavior. Identification of anomalous data enables data to be

investigated, reacted to, and accounted for in the future.

In time series data, an anomaly is a point or period of unusual behavior. Anomalies

are difficult to define with specificity because anomalies vary in type, only united by

the fact that each does not conform with “usual” behavior. A few examples of types

of anomalies include point anomalies, contextual anomalies, and collective anoma-

lies [Chandola et al., 2009]. Point anomalies are data instances where a point is at an

unusual value relative to the global distribution of points. Contextual anomalies are

data instances where a point is at an unusual value relative to other the local distribu-

tion of points (near in time) in the data. Collective anomalies are subsequences that

are unusual relative to other subsequences in the data. Together, these categories

account for anomalous spikes, unusual trends, anomalies by omission of a periodi-

cally repeated sequence, unusual changes in correlation for multivariate datasets, and

more.

General purpose anomaly detection is challenging not only because there are many

different types of anomalies, but also because many different types of time series data

are in need of monitoring. Time series data appear in domains such as finance, so-

cial media analytics, healthcare, computer hardware monitoring, weather, and many

others. Different data streams feature trends, periodicity, noise, and can be either

30

univariate or multivariate.

Many techniques have been employed for time series anomaly detection, rang-

ing from statistical methods to deep learning methods. A good anomaly detection

technique must model the “usual” in order to identify the unusual. Statistical meth-

ods [Din, 2015] make assumptions about the underlying data distribution, and deep

learning methods [Hundman et al., 2018] learn those assumptions. Most deep learn-

ing models will learn either to forecast or to reconstruct windows of time series data.

If the model forecasts or reconstructs incoming new data with low error, the new

data is expected to be normal, but when the model struggles to forecast or recon-

struct accurately, then the new data is flagged anomalous. These models divide well

understood normal data from poorly understood anomalous data.

Despite deep learning’s unmatched ability to learn both simple and complex fea-

tures of data, deep learning for time series anomaly detection faces a few significant

hurdles. In fact, deep learning’s ability to learn complex features threatens to overfit

data [Zhang et al., 2017] and interpret too much data as normal. While simple sta-

tistical approaches are often inadequate to explain the complex structures of many

time series datasets, deep learning algorithms can often explain both anomalous and

normal data, making distinction impossible. Finally, while statistical methods rely on

assumptions, e.g. domain specific knowledge, deep learning methods rely on a large

amount of representative data.

In order to overcome the difficulties of applying deep learning to time series

anomaly detection, a few approaches have been used. A common approach is to

limit the model’s capacity through the latent dimension of an autoencoder in order

to avoid overfitting. Combining multiple loss functions is another technique which

can prevent a deep learning model from overfitting [Geiger et al., 2020, Zhao et al.,

2020,Kukacka et al., 2017].

31

The high demand for monitoring of temporal data streams with a large diversity of

datasets and anomaly types requires a general purpose approach capable of detecting

many types of anomalies in many types of data. Because data labeling is expensive, a

good general purpose approach must not rely on labeled data or supervised techniques.

In this paper we demonstrate that a simple autoencoder with a few critical post-

processing steps is able to outperform more complex techniques as an unsupervised,

general purpose approach for anomaly detection. Our model is able to outperform

more complex state-of-the art-competitors on three benchmark collections of data:

Yahoo, Numenta (NAB), and NASA.

4.3 Related Works

In this section we will address the current literature for time series anomaly detection.

Three families of techniques stand out in particular: the forecasting techniques, the

reconstruction techniques, and the distribution techniques. We will discuss each of

these techniques and also specific methods that use one or a combination of these

techniques.

4.3.1 Forecasting Techniques

One of the standard techniques applied to time series anomaly detection depends

on the idea that normal data should be predictable from the immediately previous

data, and anomalies should be unpredictable. This family of techniques includes both

statistical models and deep learning models.

Statistical models such as ARIMA [Din, 2015] make assumptions about the distri-

bution of the data. ARIMA in particular assumes stationarity in the data distribution

in order to forecast future values. The model predicts the next value using these as-

sumptions, and flags anomalies where predictions have high error. For best results

the time series may require domain-specific featurization as a preprocessing step.

32

Deep learning forecasting models address a supervised regression problem. The

model is given as input a past window, and trained to predict the value or values

immediately following. The model flags anomalies where predictions have high errors.

This approach is unsupervised in the sense that no anomaly labels are required.

However, deep forecasting approaches fall in danger of overfitting, especially if the

network is not carefully parametrized to a simple size.

Examples that use forecasting to determine anomalies include Hundman [Hund-

man et al., 2018] and MTAD-GAT [Zhao et al., 2020]. Another example of a deep

forecasting approach is the Hierarchical Temporal Memory (HTM) model [Ahmad

et al., 2017]. This model first encodes a hidden state, and then predicts the next

hidden state encoding instead of the next raw data value. Again, large error suggests

an anomaly.

Forecasting approaches are an important and popular family of techniques for

time series anomaly detection because of their intuitive design and strong results,

but deep learning forecasting models frequently suffer from overfitting if not tuned

carefully.

4.3.2 Reconstruction Techniques

Most deep learning algorithms rely at least in part on using autoencoder reconstruc-

tions to detect anomalies. Reconstruction techniques encode a window of data into a

low dimensional latent space and then decode back to a reconstruction of the original

window. Because the latent space is lower in dimension than the input window, in-

formation is lost in this mapping, and if the model reconstructs the original window

poorly, this indicates significant information loss. Ideally, the information lost in an

autoencoder is noise information rather than signal information.

Reconstruction techniques make use of the standard Auto-Encoder [Bank et al.,

2020] or the Variational Auto-Encoder [Kingma and Welling, 2019] to map from the

33

high to low dimensional space and back again. These models must be trained on past

data to learn to reconstruct common patterns in the data.

Deep reconstruction models benefit from the low-dimensional latent space, making

overfitting less likely, but like all deep models, they still often suffer from overfitting.

Reconstruction loss has been combined with other loss functions such as a forecast-

ing loss [Zhao et al., 2020], a generative adversarial loss [Geiger et al., 2020], or a

regularization loss [Kukacka et al., 2017] in order to avoid overfitting.

TADGAN [Geiger et al., 2020] uses reconstruction error in combination with an

adversarial approach, and MTAD-GAT uses forecasting in combination with recon-

struction error. Omnianomaly [Su et al., 2019] uses a recurrent variational autoen-

coder as a reconstruction model to detect anomalies.

Our technique is a reconstruction technique using post-processing to overcome a

few common pitfalls.

Figure 4·1: Without any post-processing, a sliding window over the
data (1st plot) will yield a high anomaly score for any window in which
the anomaly is overlapping, resulting in wide regions of high predicted
anomaly scores (2nd plot). This is undesirable behavior, especially
when two anomalies appear in rapid succession, as these anomalies will
not be distinguished from each other by a threshold. If anomaly scores
are calculated by weighted sum (3rd plot) over the sliding window in-
stead of a simple sum, anomalies can easily be distinguished. This data
was synthetically created with two spike anomalies to best illustrate this
concept.

34

4.3.3 Distribution Based Techniques

Distribution techniques model the underlying frequency distribution of the data in

order to determine whether an event is rare and anomalous or common and normal.

To determine whether a person’s height is unusually low or high one can compare

that person’s height with the Gaussian distribution of heights to understand the rarity

of that height; similarly, distribution techniques either assume or learn the underlying

distribution to establish rarity.

The distribution technique is frequently implicit in the other techniques [Probst

and Rothlauf, 2020], and is also explicitly combined with the reconstruction technique

in TADGAN [Geiger et al., 2020], but to our knowledge has not yet been effectively

used stand-alone for time series anomaly detection.

Schlegl [Schlegl et al., 2019] uses the discriminator of a generative adversarial net-

work to predict whether medical image data is in-distribution or out-of-distribution,

and [Geiger et al., 2020] similarly uses a discriminator score to predict anomalies in

time series, but does so in combination with reconstruction error. GANs represent

the current state-of-the-art in the distributional approach for time series anomaly

detection.

While the theory of distributional techniques is most attractive, and some re-

cent success has been achieved, a GAN approach has never been successfully used

stand-alone for general purpose time series anomaly detection because of one major

drawback: mode collapse. Even state-of-the-art techniques combating mode collapse

such as VEEGAN [Srivastava et al., 2017] achieve only a reduction of mode collapse.

For many GAN applications, mode collapse is not particularly damaging, but for

detecting anomalies based on the assumption that the discriminator has learned the

true underlying distribution, mode collapse can be catastrophic. GANs also suffer

from training instability and long convergence times [Kodali et al., 2017]. TADGAN

35

performs well because it combines the distribution approach with the reconstruction

approach, as indicated by the ablation study found in their paper. [Geiger et al.,

2020].

4.4 Methods

Figure 4·2: Noise levels may also change suddenly in a time series (1st
plot). Using normalization (3rd plot) again improves anomaly scoring
when compared with no normalization (2nd plot). With normalization
a range of thresholds are able to be selected that will still yield good
results.

After experimenting with TADGAN and Omnianomaly, we realized that a multi-

layer perceptron autoencoder was able to perform competitively with state-of-the-art

approaches. Using a simple autoencoder also offers several advantages beyond per-

formance, including fast and stable training, simple hyperparameter tuning, easy

debugging, and easy identification of issues.

First, we use a sliding window across the time series to generate training samples,

then the model learns to reconstruct these samples, and finally we predict anomalies

by thresholding reconstruction error. This approach is simple, practical, and powerful

for time series anomaly detection. Despite this model’s effectiveness, the model still

requires post-processing steps to reduce a high rate of false alarm. For all the datasets

36

we used for benchmarking, we used a sliding window size of 100 and a latent dimension

of 10.

Our contributions come not from our deep learning model, but instead in how that

model is used to create meaningful anomaly scores. In particular we address three

issues that repeatedly appear in autoencoder results – the issue of predicted anomaly

width corresponding to sliding window width, the issue of anomaly scores changing

with either sudden or trended distribution shifts in the data, and finally the issue of

flagging sudden changes between two normal modes of data. We will discuss each of

these issues and corresponding solutions with illustrations in the following sections.

Once the model is trained, the anomaly pipeline begins by passing the data window

through the trained autoencoder. Then the L2 reconstruction loss is calculated at

each of the points in the window. At this point, we add our post-processing steps to

improve the model. We take a weighted sum instead of a simple sum of the L2 losses

at each data point, and we normalize the score according to the standard deviation

of the reconstruction errors in the window. Finally, a threshold is selected to predict

anomaly labels from the anomaly scores.

4.4.1 Why a Weighted Sum?

A simple sum of anomaly scores will result in anomalies of length 1 becoming predic-

tions of the length of the window size. The reason for this is that a length 1 anomalous

spike appears in many shifted overlapping windows according to the window size as

shown in figure 4·1. This behavior, predicting anomalies much wider than the true

anomalies, is undesirable because it does not represent the true anomaly width. This

is especially undesirable if two anomalies appear within one window length, and can

not be distinguished from one another.

In order to address this dilemma, we take a weighted sum of the reconstruction

errors, with much more significant weights given to indices at the leading edge of the

37

sliding window.

4.4.2 Why Normalization?

Time series data often contain changes in trends and shifts in distribution. These

changing and shifting distributions represent different modes of “usual” data, but

unfortunately they still impact the anomaly scores, making good threshold selection

across the entire data distribution impossible. For example, a dataset’s noise level or

amplitude may trend higher over a region of data, and the anomaly scores will also

trend higher since the reconstruction model cannot fit the high noise. This creates

another dilemma : no threshold will perform well for both the high and low noise

portions of data. A threshold will either fail to identify true anomalies in the high

noise portion, or flag many false alarms in the low noise portion (see figure 5·1).

In order to address this dilemma we normalize the weighted sum of reconstruction

errors by the standard deviation of reconstruction errors in the sliding window. If

most points in a window have a low reconstruction error in a low noise portion of

data, a few high noise points in this portion will still result in a high anomaly score

because they have been divided by a small standard deviation. On the other hand,

higher reconstruction errors in a higher noise portion of data will be normalized such

that an anomaly will not be flagged unless a much higher reconstruction error relative

to the surrounding data is observed.

4.4.3 Delay Improves Results

Continuing upon the idea of changing distributions of data, sometimes a data distri-

bution will shift suddenly between two modes of ”usual” instead of trending gradually.

When the sliding window first observes a changed distribution at its leading edge, it

cannot possibly predict whether this is an anomalous spike or simply a transition

between two modes of usual data without observing future data to see if the new

38

Table 4.1: Experimental Results, F1 scores

Model NASA YAHOO
SMAP MSL A1 A2 A3 A4

DenseAE w/ Post 0.623 0.797 0.916 0.995 0.976 0.912
DenseAE w/o Post 0.655 0.608 0.496 0.283 0.097 0.041

TADGAN [Geiger et al., 2020] 0.623 0.704 0.8 0.867 0.685 0.6
LSTM [Hundman et al., 2018] 0.46 0.69 0.744 0.98 0.772 0.645

ARIMA [Din, 2015] 0.492 0.42 0.726 0.836 0.815 0.703
Deep AR [Salinas et al., 2020] 0.583 0.453 0.532 0.929 0.467 0.454
HTM [Ahmad et al., 2017] 0.412 0.557 0.588 0.662 0.325 0.287
MADGAN [Li et al., 2019] 0.111 0.128 0.37 0.439 0.589 0.464
MS Azure [Ren et al., 2019] 0.218 0.118 0.352 0.612 0.257 0.204

Table 4.2: Experimental Results, F1 scores

Model NAB
Art AdEx AWS Traf Tweets µ σ

DenseAE w/ Post 0.8 0.762 0.762 0.8 0.71 0.82 0.12
DenseAE w/o Post 0.667 0.533 0.764 0.333 0.742 0.47 0.25

TADGAN [Geiger et al., 2020] 0.8 0.8 0.644 0.486 0.609 0.69 0.11
LSTM [Hundman et al., 2018] 0.375 0.538 0.474 0.634 0.543 0.62 0.17

ARIMA [Din, 2015] 0.353 0.583 0.518 0.571 0.567 0.6 0.16
Deep AR [Salinas et al., 2020] 0.545 0.615 0.39 0.6 0.542 0.56 0.14
HTM [Ahmad et al., 2017] 0.455 0.519 0.571 0.474 0.526 0.49 0.11
MADGAN [Li et al., 2019] 0.324 0.297 0.273 0.412 0.444 0.35 0.14
MS Azure [Ren et al., 2019] 0.125 0.066 0.173 0.166 0.118 0.22 0.15

39

mode persists (if it is a change in distribution) or disappears (if it is an anomalous

spike). Therefore, we must predict anomalies at some delay in order to avoid flagging

false alarms at these transition points.

In order to distinguish these transition points with a low anomaly score, the

sliding window is divided at a delay index into “past” points and “future” points. We

normalize based on both “past” and “future” standard deviations. In particular, we

normalize by the power mean of the “past” and “future” standard deviations because

the power mean biases towards the maximum value. We found that the degree 4

power mean works well. Finally, our weighted sum weights the “current” point and

those points closest to the “current” highest in order to center the predicted anomaly

score at the index between “past” and “future”. The “future” points are not actually

in the future because these have already been observed, and thus this method trades

a small prediction delay for a reduced false alarm rate.

4.4.4 Putting it all Together

There are a variety of weighting function and normalization approaches that yield

improved results, but for benchmark reproducibility we will now describe the settings

of our weighting and normalization schemes. We use a window size of 100 time

steps and a delay of 15 time steps dividing 84 “past” time steps, 1 “current”, and 15

“future” time steps. We normalize the reconstruction scores by dividing by the degree

4 power mean of the standard deviations of the “future” and “past” reconstruction

errors 4

√
σ4
past + σ4

future. We weight the reconstruction errors by multiplying each

reconstruction value by (sizewindow−|index−delay|)2 creating a spike at the “current”

time step and a quadratic decay to either side. Because the “current” time step is

especially important, we further amplified this value.

We set the autoencoder’s latent dimension to 10 and trained with the mean

squared error loss function. Experiments were run using PyTorch [Paszke et al.,

40

2019]. We use the simple deep multilayer perceptron (MLP) architecture with layer

sizes 100-80-40-20-10-20-40-80-100.

4.5 Experiments

4.5.1 Datasets

Three collections of datasets stand out in the literature for benchmarking time series

anomaly detection algorithms – the Yahoo collection, the Numenta collection, and

the NASA collection. We have selected to benchmark using the same subset of these

datasets as TADGAN’s recent state-of-the-art work. We benchmark using the entire

Yahoo collection, consisting of four univariate datasets, A1 sourced from real Yahoo

service metrics, and A2-A4 synthetically created. We also benchmark on the entire

NASA collection, consisting of multivariate telemetry measurements from systems

aboard the Mars Science Laboratory (MSL) rover and Soil Moisture Active Passive

(SMAP) satellite. From the Numenta Anomaly Benchmark (NAB) collection we test

on five datasets – advertisement clicking rate data, Amazon Web Services (AWS)

server metrics, Twitter volume data, vehicle traffic data, and a synthetically created

artificial dataset. Benchmarking on these datasets together provides a method for

comparing performance between different anomaly detection algorithms across a va-

riety of domains. Although each of these datasets is labeled, the training must remain

unsupervised in order to ensure that good benchmark performance implicates good

performance on other unlabeled datasets.

4.5.2 Measuring Performance

We measure the performance using the F1 metric. F1 = TP
TP+ 1

2
∗(FP+FN)

. A good

monitoring system will correctly identify anomalies without flooding the user with

false alarms. The F1 metric rewards true positive prediction (TP) and penalizes both

41

false negatives (FN) and false positives (FP). Unfortunately, time-series anomaly

detection algorithms are plagued by a lack of standardization for scoring models. In

an effort to remedy this situation, Numenta released their own scoring metric [Lavin

and Ahmad, 2015] along with their collection of datasets, but perhaps because people

desire to use one metric easily across multiple datasets, including the Yahoo and

NASA datasets, Numenta’s scoring function has not been widely adopted. Area

under the curve (AUC) struggles to differentiate between any models with decent

performance. Therefore, most literature uses the F1 metric, a well established metric

used across multiple domains, but many have used time series specific variations,

which can either drastically boost or plunge scores. Variations agree that partially

overlapping prediction and anomaly windows should still count as true positives,

but variations differ on how to count anomalies. One group measures each anomaly

window as a singular anomaly, and another measures an anomaly window according

to the window’s width. This difference can have a drastic effect. If a correctly

predicted anomaly window is length 100, then the first of these variations will record

one true positive and the second will record 100, giving full credit even in the case

of partial overlap and significantly boosting scores. We think it is more sensible

to count each anomaly window as a singular true positive or false negative, and

each contiguous false positive also as a singular value. Each of these is a singular

event, and should be counted as such. Therefore, we use the F1-metric time series

variation used by [Geiger et al., 2020]: (1) If a known anomalous window overlaps

any predicted windows, a single true positive is recorded. (2) If a known anomalous

window does not overlap any predicted windows, a single false negative is recorded.

(3) If a predicted window overlaps with no anomalous windows, a single false positive

is recorded. We selected optimal thresholds in order to measure the performance of

our anomaly scoring function.

42

4.5.3 Results

Table 4.2 shows the experimental results of our model both with and without post-

processing alongside competitor results. With the post-processing included, our

model achieves the best results on 8 of 11 datasets, and near the best results for

the other 3.

The difference in F1 scores with post-processing is much more noticeable in some

datasets than others. In particular, the Yahoo datasets, which have many examples

of multiple anomalies near to each other, benefit from the weighted sum in order to

distinguish true positives. Yahoo’s A4 dataset also features many sudden distribution

shifts, benefitting from the normalization step.

The NASA dataset performance is also state-of-the-art. SMAP features anomalies

spaced in time from each other and no major distribution shifts, explaining why

results are similar with and without post-processing. The NAB dataset also sees

noticeable improvements with post-processing, and noticeable improvements against

many competitors even without post-processing for the AWS dataset.

The results shown demonstrate that a simple autoencoder can achieve state-of-

the-art results with simple post-processing. For most applications, complex and large

model architectures boost performance, but for time series anomaly detection, simple

is better.

4.6 Conclusion

In conclusion, sometimes simple does work better. Deep learning is a powerful tool,

able to extract meaningful features from complex data, but for time series anomaly

detection a simpler model is important to avoid overfitting. A deep autoencoder with

a small latent dimension offers the feature flexibility and automation of deep learning

along with the power of simplicity. In order to improve results, it is better to focus on

43

optimized post-processing rather than using a fancy new architecture that increases

the chance of overfitting. More work can be done in optimizing how deep learning

can be used for anomaly detection. In particular, our method and many others still

struggle to determine the best resolution and window size to scan for anomalies. Deep

learning already assists with many of the burdens of engineering time series, but the

more steps that can be automated the better.

44

Chapter 5

Using Block Sparse Weights with

Compressed Implicit Neural

Representation Networks

5.1 Abstract

We use structured sparsity to improve on an existing approach for compressing images.

A small neural network is trained to encode an image’s RGB values according to pixel

location. This small neural network is then used as the compressed representation of

the image. The approach outlined in this work demonstrates that block-sparse weight

matrices offer more expressive power per weight than dense fully-connected weight

matrices, resulting in better compression performance. While this approach does not

yet outperform the traditional state-of-the-art algorithms for image compression, it

further develops a radically novel approach that offers flexibility and great potential

for rapid advancement.

5.2 Introduction

Compression of files is an important mechanism for reducing bandwidth load over

computer networks. Image, video, and audio mediums often allow for lossy compres-

sion as a pixel perfect representation is rarely necessary to view an image. In the

image domain, recent work has developed deep learning techniques to compete with

more traditional image codecs such as JPEG.

45

Most deep compression techniques use an autoencoder architecture to encode an

image into a latent space, and then the sender transmits a latent encoding instead of

the image. These approaches, however, require both the sender and receiver to have

the weights of the autoencoder, weights that use orders-of-magnitude more memory

than the images themselves.

One novel approach, however, takes a completely different approach to the problem

of neural compression. This approach uses compressed implicit neural representations

networks (COINs) [Dupont et al., 2021] to offers several benefits. COIN represents

the image as a learned function mapping pixel coordinates to RGB values, and the

weight values of this learned function are then the compressed representation of the

image. In this approach, there is no larger network that must be shared beforehand

between the two devices, signal is preserved competitively with existing methods at

low bit-rates, and images can be decoded to any desired resolution.

COIN offers a new unexplored paradigm where many further improvements can be

made, increasing performance to unknown new measures. In this work, we improve on

this novel approach by introducing structured sparsity into the model design, slightly

boosting PSNR values over the original work.

5.3 Related Work

Currently image compression is dominated by traditional approaches which make use

of color transformations, wavelets, Fourier transformations, and more. The workings

of these approaches is outside the scope of this work, which deals with minimizing

information in deep learning, but offer an important baseline of comparison.

Over the past few years, deep learning approaches [Lee et al., 2019,Minnen et al.,

2018, Ballé et al., 2018] using an autoencoder to compress an image into a latent

dimension have proven to be effective, and these offer one potential avenue for bringing

46

deep learning to a state-of-the-art performance level in image compression.

Finally, beyond the traditional algorithms and the deep latent approach, neural

representations [Mildenhall et al., 2020,Sitzmann et al., 2020,Dupont et al., 2021] are

a possible contender for state-of-the-art image compression.

5.4 Background and Methods

Last year, SIREN networks were introduced as a method for encoding images as a

neural network. The original SIREN paper [Sitzmann et al., 2020] shows that periodic

activation functions dramatically improve the expressiveness of neural representation

networks, enabling them to represent sharp edges and gradients in the image. A

sinusoidal periodic activation also offers the benefit of being easily differentiable into

another SIREN network since the derivative of a sinusoid activation function is also a

sinusoid. The initial SIREN paper does not probe neural representations as an option

for compression, but demonstrates the effectiveness of SIRENs for audio, image, and

video encoding, for image inpainting, and for differentiable equation solving.

In March of 2021 COIN demonstrated SIREN networks capable of compressing

images competitively with the JPEG codec at low bit-rates. COIN representations

outperformed JPEG at the lowest bit-rates of compression. Despite COIN repre-

senting a possible paradigm shift in compression, COIN still underperforms the best

compression algorithms even at low bit-rates. Therefore, demonstrating techniques

for improvement on COIN is important for the development of this new technology.

Using COIN’s paradigm of neural representations for image compression, image

compression becomes closely related to the problem of model compression (such as

techniques discussed in chapter 3 of this dissertation), but not all model compression

techniques are suited to compression of SIREN networks. The NodeDrop technique of

chapter three cannot compress a SIREN because of its sinusoidal activation functions.

47

Edge pruning techniques can compress weight matrices at the cost of expressive power,

but weight matrices stored in sparse format include storing indices of values, and so

are not as efficient as dense matrices per weight stored.

Random block sparsity has successfully been used to accelerate the training of

neural networks. Random block sparsity replaces a dense fully connected layer with

a blocked weight matrix, In this work we will use predetermined block sparsity to

improve COIN’s expressive performance. Each weight matrix will be tiled diagonally

by blocks of predetermined size. A BlockCOIN model architecture is determined by

layer depth, block size, and layer size. Because many weights are predetermined to be

0, we can afford to make much wider layers than COIN, with many sparsely connected

nodes.

5.5 Experiment

We tested BlockCOIN using the same benchmarks and baselines as COIN. Testing was

performed on the Kodak image dataset against three deep autoencoder competitors,

BMS, MBT, and CST. Performance was also compared to more traditional codecs

JPEG, JPEG2000, BPG, and VTM. Experiments show that using block-sparse ma-

trices yields a marginal performance improvement over the original COIN models, as

shown in Figure 5·1. Figure 5·1 measures the fidelity of the compressed image using

the peak-signal-to-noise-ratio (PSNR) at different bit rates in bits per pixel (bpp).

This is a first step toward becoming more competitive with the other models. Train-

ing was performed at 32-bit precision, but testing was performed at 16-bit precision

in order to improve compression.

48

Figure 5·1: The block sparse version of COIN’s rate-distortion curve
marginally outperforms COIN’s rate-distortion curve. Both curves are
not yet competitive with the state-of-the-art deep learning approachs
or popular codecs except for JPEG.

49

5.6 Outlook

This work builds directly upon the work of COIN, and yields only a slight performance

gain. More work needs to be done before this chapter is published as a standalone

paper. Despite this, the improvement in PSNR scores is noticeable enough to in-

corporate this technique along with future techniques. I think that a careful study

of quantization could yield improved results. Also the suggestions from COIN’s ini-

tial paper, using entropy coding and learning a distribution of weights, both could

yield improvements. Neural representations for image compression offer benefits that

other deep learning techniques do not, with a small model size that could be executed

on even devices with only kilobytes of memory hardware. Low bit-rate performance

looks promising, and one-to-many applications such as Netflix or Youtube could ben-

efit from improved compression even at the cost of the long encoding time associated

with training a neural network. Neither COIN nor BlockCOIN are application ready,

but these novel approaches are rife for further exploration.

50

Chapter 6

Conclusions

6.1 Conclusion

In this dissertation, I have discussed four projects, each related to minimalism in

deep learning. After introducing the dissertation topic in the introduction, I ad-

dressed using deep learning with minimal measurements in side-channel analysis, a

general purpose technique to reduce the size of neural networks while maintaining

performance, how minimalism in deep learning can help avoid overfitting in anomaly

detection, and an avenue of research for bringing minimalism in deep learning to

the new application of image compression. Each of the aspects of minimalism in

deep learning discussed in this dissertation were advanced by my work, and can be

advanced further by future work.

In chapter two, I used deep learning to classify types of repeated blocks in pro-

gram execution using only side-channel signals of power and EM radiation. This

progressed beyond techniques that classified entire programs, but unlocking reliable

instruction-level tracking remains an exciting goal in side-channel research. With

reliable instruction-level tracking one could mimic program execution on an external

device by measuring only a processor’s side-channels.

It would also be useful to further explore the architecture space to see if different

architectures can yield performance with even less context. In our architecture explo-

ration we found the 1D CNN layers critical to success, but it is possible that removing

the GRU layer could still yield optimal performance. Further analysis using different

51

side-channels such as temperature and fan noise is another direction of future work.

Chapter three explored a novel technique for reducing the size of neural net-

works, with provable benefits. Model compression through pruning, quantization,

and other novel techniques will always aim towards better achievement. Combina-

tions of these techniques especially deserve further exploration. Combining NodeDrop

with entropy-coding on the weights also deserves consideration.

Most of all, expanding the applications of NodeDrop is important. NodeDrop

should be used as a step before neural architecture searches in order to constrain

the search space. Also, expanding beyond convolutions and fully-connected layers to

different architectures and settings, such as the recurrent architecture or transformer,

deserves further work. A clever use of skip layers and regularization could even make

possible the elimination of entire layers, tuning the depth of the model instead of the

width. Similar conditions and regularizers should be sought for these architectures

and settings.

Chapter four achieved strong performance on unsupervised time-series anomaly

detection benchmarks. For time-series anomaly detection, a simple technique based

on the minimalism of an autoencoder can perform better than powerful techniques

such as GAN’s and VAE’s. Sometimes a problem should be solved with a simple

model, and as a research community it is important to try the simple before the

complex.

Chapter five explored a very new application of deep learning. Neural represen-

tations are exciting for many reasons, not just compression, but the use of neural

representations for image compression has at least given us an understanding of just

how efficiently deep learning models store information in their weights. Can we make

neural representations more efficient? And if we can, will the techniques used prove

beneficial to make other deep learning models also more efficient? These questions

52

are important to answer even if deep learning never becomes the standard for image

compression.

Finally, there are also many more aspects of minimalism in deep learning not dis-

cussed in this dissertation that must continue to be explored. Unsupervised learning

continues to advance rapidly in applications beyond anomaly detection. This research

minimizes the infamous labelling demands of effective models. Research in few-shot

learning, transfer learning, and data augmentation help models to train with less

data.

Deep learning is limited by its demands. The less demanding deep learning be-

comes, the more ubiquitous it will also become.

References

Agrawal, D., Archambeault, B., Rao, J., and Rohatgi, P. (2003). The
em side – channel(s): Attacks and assessment methodologies.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsuper-
vised real-time anomaly detection for streaming data. Neurocom-
puting, 262:134–147. Online Real-Time Learning Strategies for Data
Streams.

Alvarez, J. M. and Salzmann, M. (2016). Learning the number of
neurons in deep networks. Neural Information Processing Systems
(NIPS).

Anwar, S., Hwang, K., and Sung, W. (2017). Structured pruning of deep
convolutional neural networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC).

Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston, N. (2018).
Variational image compression with a scale hyperprior. In Interna-
tional Conference on Learning Representations.

Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoencoders.
CoRR, abs/2003.05991.

Callan, R., Zajic, A., and Prvulovic, M. (2014). A practical methodol-
ogy for measuring the side-channel signal available to the attacker for
instruction-level events. 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection:
A survey. ACM Comput. Surv., 41(3).

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014).
On the properties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 103–111.
Association for Computational Linguistics.

Chollet, F. et al. (2015). Keras. https://keras.io.

53

54

Clevert, D., Unterthiner, T., and Hochreiter, S. (2015). Fast and accu-
rate deep network learning by exponential linear units (elus). CoRR,
abs/1511.07289.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R.
(2014). Exploiting linear structure within convolutional networks for
efficient evaluation. Neural Information Processing Systems (NIPS).

Din, M. (2015). Arima by box jenkins methodology for estimation and
forecasting models in higher education.

Dupont, E., Goli’nski, A., Alizadeh, M., Teh, Y., and Doucet, A. (2021).
Coin: Compression with implicit neural representations. ArXiv,
abs/2103.03123.

Gao Huang, Zhuang Liu, L. v. d. M. K. Q. W. (2017). Densely
connected convolutional networks. Computer Vision and Pattern
Recognition (CVPR).

Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., and Veera-
machaneni, K. (2020). Tadgan: Time series anomaly detection using
generative adversarial networks. In 2020 IEEE International Confer-
ence on Big Data (IEEE BigData). IEEE.

Genkin, D., Shamir, A., and Tromer, E. (2013). Rsa key extraction via
low-bandwidth acoustic cryptanalysis. Cryptology ePrint Archive,
Report 2013/857.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. (2014). Compressing deep
convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep
learning, volume 1. MIT press Cambridge.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015).
Deep learning with limited numerical precision. Internatinal Confer-
ence on Machine Learning (ICML).

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Com-
pressing deep neural network with pruning, trained quantization and
huffman coding. International Conference on Learning Representa-
tions (ICLR).

Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both weights
and connections for efficient neural network. Neural Information
Processing Systems (NIPS).

55

Hassibi, B. and Stork, D. G. (1993). Second order derivatives for net-
work pruning: Optimal brain surgeon. Neural Information Processing
Systems (NIPS).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning
for image recognition. Computer Vision and Pattern Recognition
(CVPR).

Hospodar, G., Gierlichs, B., Mulder, E. D., Verbauwhede, I., and Van-
dewalle, J. (2011). Machine learning in side-channel analysis: a first
study. J. Cryptographic Engineering, 1(4):293–302.

Hubara, M. C. I., , Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).
Binarized neural networks. Neural Information Processing Systems
(NIPS).

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., and Soder-
strom, T. (2018). Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery amp;
Data Mining, KDD ’18, page 387–395, New York, NY, USA. Associ-
ation for Computing Machinery.

Hutter, M. and Schmidt, J.-M. (2014). The temperature side channel
and heating fault attacks. IACR Cryptology ePrint Archive, 2014:190.

Ioffe, S. and Szegedy, C. (2015a). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Pro-
ceedings of the 32Nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, pages 448–456.
JMLR.org.

Ioffe, S. and Szegedy, C. (2015b). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. Interna-
tional Conference on Machine Learning (ICML).

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2015).
Compression of deep convolutional neural networks for fast and low
power mobile applications. International Conference on Learning
Representations (ICLR).

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980.

Kingma, D. P. and Welling, M. (2019). An introduction to variational
autoencoders. CoRR, abs/1906.02691.

56

Kocher, P. (1996). Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Koblitz, N., editor, Advances in Cryp-
tology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In
Wiener, M., editor, Advances in Cryptology — CRYPTO’ 99, pages
388–397, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kodali, N., Abernethy, J. D., Hays, J., and Kira, Z. (2017). How to
train your DRAGAN. CoRR, abs/1705.07215.

Krizhevsky, A., Nair, V., and Hinton, G. (2009). Cifar-10 (canadian
institute for advanced research).

Kukacka, J., Golkov, V., and Cremers, D. (2017). Regularization for
deep learning: A taxonomy. CoRR, abs/1710.10686.

Lavin, A. and Ahmad, S. (2015). Evaluating real-time anomaly detec-
tion algorithms - the numenta anomaly benchmark. CoRR, abs/1510.03336.

Lebedev, V. and Lempitsky, V. (2016). Fast convnets using group-wise
brain damage. Computer Vision and Pattern Recognition (CVPR).

LeCun, Y. and Cortes, C. (1998). MNIST handwritten digit database.

LeCun, Y., Denker, J. S., Solla, S., Howard, R. E., and Jackel, L. D.
(1990). Optimal brain damage. Neural Information Processing Sys-
tems (NIPS).

Lee, J., Cho, S., and Beack, S. (2019). Context-adaptive entropy model
for end-to-end optimized image compression. In ICLR.

Li, D., Chen, D., Shi, L., Jin, B., Goh, J., and Ng, S. (2019). MAD-
GAN: multivariate anomaly detection for time series data with gen-
erative adversarial networks. CoRR, abs/1901.04997.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2017).
Pruning filters for efficient convnets. Internation Conference on
Learning Representations (ICLR).

Liu, Y., Wei, L., Zhou, Z., Zhang, K., Xu, W., and Xu, Q. (2016). On
code execution tracking via power side-channel. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1019–1031, New York, NY, USA. ACM.

57

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017).
Learning efficient convolutional networks through network slimming.
International Conference on Computer Vision (ICCV).

Maghrebi, H., Portigliatti, T., and Prouff, E. (2016). Breaking crypto-
graphic implementations using deep learning techniques. Cryptology
ePrint Archive, Report 2016/921.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoor-
thi, R., and Ng, R. (2020). Nerf: Representing scenes as neural
radiance fields for view synthesis. In ECCV.

Minnen, D. C., Ballé, J., and Toderici, G. (2018). Joint autoregressive
and hierarchical priors for learned image compression. In NeurIPS.

Molchanov, D., Ashukha, A., and Vetrov, D. P. (2017). Variational
dropout sparsifies deep neural networks. International Conference on
Machine Learning (ICML).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R., editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.

Probst, M. and Rothlauf, F. (2020). Harmless overfitting: Using denois-
ing autoencoders in estimation of distribution algorithms. Journal of
Machine Learning Research, 21(78):1–31.

Prouff, E., Strullu, R., Benadjila, R., Cagli, E., and Canovas, C. (2018).
Study of deep learning techniques for side-channel analysis and intro-
duction to ascad database. IACR Cryptology ePrint Archive, 2018:53.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-
net: Imagenet classification using binary convolutional neural net-
works. European Conference on Computer Vision (ECCV).

Reed, R. (1993). Pruning algorithms-a survey. IEEE transactions on
Neural Networks.

Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X., Xing, T., Yang,
M., Tong, J., and Zhang, Q. (2019). Time-series anomaly detection

58

service at microsoft. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery Data Mining, KDD
’19, page 3009–3017, New York, NY, USA. Association for Computing
Machinery.

Riley, R., Graham, J., Fuller, R., Baldwin, R., and Fisher, A. (2018).
Generalization of algorithm recognition in rf side channels between
devices. In Cyber Sensing 2018, volume 10630, page 106300C. Inter-
national Society for Optics and Photonics.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020).
Deepar: Probabilistic forecasting with autoregressive recurrent net-
works. International Journal of Forecasting, 36(3):1181–1191.

Schlegl, T., Seeböck, P., Waldstein, S., Langs, G., and Schmidt-Erfurth,
U. (2019). f-anogan: Fast unsupervised anomaly detection with gen-
erative adversarial networks. Medical Image Analysis, 54.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. International Conference on
Learning Representations (ICLR).

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., and
Wetzstein, G. (2020). Implicit neural representations with periodic
activation functions. CoRR, abs/2006.09661.

Srinivas, S. and Babu, R. V. (2015). Data-free parameter pruning for
deep neural networks. British Machine Vision Conference (BMVC).

Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., and Sutton, C.
(2017). Veegan: Reducing mode collapse in gans using implicit vari-
ational learning. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. (2014). Dropout: a simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958.

Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D. (2019). Ro-
bust anomaly detection for multivariate time series through stochastic
recurrent neural network. pages 2828–2837.

59

Sun, Y., Wang, X., and Tang, X. (2015). Sparsifying neural network
connections for face recognition. Computer Vision and Pattern Recog-
nition (CVPR).

Vanhoucke, V., Senior, A., and Mao, M. Z. (2011). Improving the
speed of neural networks on cpus. Workshop on Deep Learning and
Unsupervised Feature Learning (NIPS).

Wang, X., Zhou, Q., Harer, J., Brown, G., Qiu, S., Dou, Z., Wang, J.,
Hinton, A., Gonzalez, C. A., and Chin, P. (2018). Deep learning-
based classification and anomaly detection of side-channel signals. In
Cyber Sensing 2018, volume 10630, page 1063006. International So-
ciety for Optics and Photonics.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learn-
ing structured sparsity in deep neural networks. Neural Information
Processing Systems (NIPS).

Yilmaz, B. B., Callan, R., Prvulovic, M., and Zajic, A. (2018). Capacity
of the em covert/side-channel created by the execution of instructions
in a processor. IEEE Transactions on Information Forensics and
Security, 13(3):605–620.

Zajic, A. and Prvulovic, M. (2014). Experimental demonstration of elec-
tromagnetic information leakage from modern processor-memory sys-
tems. IEEE Transactions on Electromagnetic Compatibility, 56(4):885–893.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017).
Understanding deep learning requires rethinking generalization.

Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y., Xu, B., Bai,
J., Tong, J., and Zhang, Q. (2020). Multivariate time-series anomaly
detection via graph attention network. CoRR, abs/2009.02040.

Zhou, H., Alvarez, J. M., , and Porikli, F. (2016). Less is more: Towards
compact cnns. European Conference on Computer Vision (ECCV).

60

CURRICULUM VITAE

Louis Jensen

EDUCATION

Boston University Boston, MA
Doctoral Candidate of Computer Science Sep 2017 - Present

• GPA: 3.9
• Recipient of Boston University Graduate Fellowship 2017-2022

University of Notre Dame Notre Dame, IN
Bachelors of Science in Physics Aug 2013 - May 2017

• Graduated with Honors Physics
• Senior Thesis: Precise Measurement of Drift Velocities in Active-Target Detec-

tors

COURSEWORK
Compressive Sensing, Machine Learning, Computational Game Theory, Random-

ness in Computing, Cryptography, Networks, Computational Methods in Quantum
Physics, Nuclear Physics, Advanced Astrophysics

EXPERIENCE

Clostra Remote
Research Engineer Sep 2020 - Present

• Perform deep learning and machine learning research according to company
needs

Boston University Boston, MA
Graduate Research Assistant Jan 2018 - Sep 2020

• Adviser: Dr. Peter Chin
• Research Interests and Projects: Techniques for Minimizing Size of Network

Architectures, Dimensionality of Data, Side-Channel Signal Program Analysis

Boston University Boston, MA
Graduate Teaching Assistant Sep 2017 - Dec 2019

• CS111: Introductory Programming Techniques in Python, Spring 2019 - Fall
2019

• CS112: Intermediate Programming Techniques in Java, Fall 2017

Institute for Structure and Nuclear Astrophysics Notre Dame, IN
Undergraduate Research Assistant Sep 2014 - May 2017

• Adviser: Dr. Tan Ahn
• Research Interests: Development of the ND-Cube Active Target Detector, Nu-

clear Structure – Experimental

61

PUBLICATIONS

[1] L. Jensen, J. Fosa, B. Teitelbaum, P. Chin. “How Dense Autoencoders can still
Achieve theState-of-the-art in Time-Series Anomaly Detection.” (submitted to
Asilomar, 2021)

[2] T. Ahn, J. S. Randhawa, S. Aguilar, D. Blankstein, L. Delgado, N. Dixneuf, S.
L. Henderson, W. Jackson, L. Jensen, S. Jin, J. Koci, J. J. Kolata, J. Lai, J.
Levano, X. Li, A. Mubarak, P. D. O’Malley, S. Rameriz Martin, M. Renaud, M.
Z. Serikow, A. Tollefson, J. Wilson, L. Yan
“The Notre-Dame Cube: An active-target time-projection chamber for radioac-
tive beam experiments and detector development,” in preparation for submission,
2021

[3] L. Jensen, J. Harer, and S. Chin. “NodeDrop: A Method for Finding Suffi-
cient Network Architecture Size.” IJCNN 2020: International Joint Conference
on Neural Networks

[4] L. Jensen, G. Brown, X. Wang, J. Harer, and S. Chin. “Deep Learning for
Minimal-context Block Tracking through Side-channel Analysis.” ICASSP 2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2019): 3207-211. Web.

[5] T. Ahn, D. Bardayan, D. Bazin, S. Beceiro Novo, F. Becchetti, J. Bradt, M.
Brodeur, L. Carpenter, Z. Chajecki, M. Cortesi, A. Fritsch, M. Hall, O. Hall, L.
Jensen, J. Kolata, W. Lynch, W. Mittig, P. O’Malley, D. Suzuki,
“The Prototype Active-Target Time-Projection Chamber used with TwinSol
Radioactive-Ion Beams,” Nuclear Instruments and Methods in Physics Research
B, vol. 376, pp. 321-325, Jan. 2016.

PRESENTATIONS

[1] “NodeDrop: A Method for Finding Sufficient Network Architecture Size,” at In-
ternational Joint Conference on Neural Networks, Glasgow, Scotland, will be in
July 2020

[2] “Finding Appropriate Neural Network Sizes and Finding the Dimensionality of
Data,” for Oral Exam for PhD Candidacy, Passed, Boston, MA in Feb 2020

[3] “Deep Learning for Minimal-context Block Tracking through Side-channel Anal-
ysis,” at International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 2019, Brighton, UK in May 2019

[4] “The Precise Measurement of Drift Velocities in Active Target Detectors,” at
American Physical Society Division of Nuclear Physics Meeting 2016, Vancouver,
BC, Canada in Oct 2016

[5] “Analyzing the Structure of 14O with TwinSol and AT-TPC,” at American Phys-
ical Society Division of Nuclear Physics Meeting 2015, Santa Fe, NM, USA in Oct
2015

62

HARD SKILLS
Python, Java, Matlab, LATEX, Linux, Pytorch, Pandas, Numpy, scikit-learn, ATS,

Tensorflow, Mathematica, matplotlib

SOFT SKILLS
Deep Learning, Functional Programming, Convex Optimization, Data Analysis, Clear
Writing and Communication, Machine Learning, Data visualization, Data Scraping,
Basics of Databases, Mathematics, Physics, Teaching, Presentations

