
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

ANOMALY DETECTION IN COMPETITIVE

MULTIPLAYER GAMES

by

LAURA GREIGE

B.S., Sorbonne Univesité, 2015
M.S., Sorbonne Université, 2017

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2022

© 2022 by
LAURA GREIGE
All rights reserved

Approved by

First Reader

Peter “Sang” Chin, PhD
Research Professor of Computer Science

Second Reader

Mark Crovella, PhD
Professor of Computer Science

Third Reader

Gianluca Stringhini, PhD
Assistant Professor of Electrical & Computer Engineering

Fourth Reader

George Kollios, PhD
Professor of Computer Science

Acknowledgments

I owe countless depth of gratitude to all the wonderful people without whom this

project would not have been reality. First and foremost, I would like to express

my sincerest thanks to my advisor, Professor Peter Chin for his endless support and

encouragement during every stage of my PhD. I would also like to thank my committee

members, Professors Mark Crovella, Gianluca Stringhini, and George Kollios for their

time, attention and valuable feedback.

During my PhD, I was fortunate enough to have interned with the EADP Data

& AI team at Electronic Arts and would like to extend my deepest gratitude to my

team and collaborators, in particular my mentors Meredith Trotter and Fernando De

Mesentier Silva as well as my managers Sundeep Naravulla and Alex Sulimanov for

their endless support over the last two years.

To my parents and to my sister. I would not be writing this today if it weren’t for

your unconditional love and constant support of all that I do. Thank you for always

encouraging me to follow my dreams and for believing in me.

Finally, to my friends and fellow PhD candidates. You’ve cheered me on, even

through my hardest times and celebrated each of my accomplishments, and I will

forever be grateful for our friendship and the memories we share together. Thank

you for a wonderful and memorable PhD journey at Boston University.

Laura Greige

PhD Candidate

Computer Science Department

iv

ANOMALY DETECTION IN COMPETITIVE

MULTIPLAYER GAMES

LAURA GREIGE

Boston University, Graduate School of Arts and Sciences, 2022

Major Professor: Peter “Sang” Chin, PhD
Research Professor of Computer Science

ABSTRACT

As online video games rise in popularity, there has been a significant increase in

fraudulent behavior and malicious activity. Numerous methods have been proposed to

automate the identification and detection of such behaviors but most studies focused

on situations with perfect prior knowledge of the gaming environment, particularly,

in regards to the malicious behaviour being identified. This assumption is often too

strong and generally false when it comes to real-world scenarios. For these reasons,

it is useful to consider the case of incomplete information and combine techniques

from machine learning and solution concepts from game theory that are better suited

to tackle such settings, and automate the detection of anomalous behaviors. In this

thesis, we focus on two major threats in competitive multiplayer games: intrusion

and device compromises, and cheating and exploitation.

The former is a knowledge-based anomaly detection, focused on understanding

the technology and strategy being used by the attacker in order to prevent it from

occurring. One of the major security concerns in cyber-security are Advanced Per-

sistent Threats (APT). APTs are stealthy and constant computer hacking processes

which can compromise systems bypassing traditional security measures in order to

v

gain access to confidential information held in those systems. In online video games,

most APT attacks leverage phishing and target individuals with fake game updates

or email scams to gain initial access and steal user data, including but not limited to

account credentials and credit card numbers. In our work, we examine the two player

game called FlipIt to model covert compromises and stealthy hacking processes in

partial observable settings, and show the efficiency of game theory concept solutions

and deep reinforcement learning techniques to improve learning and detection in the

context of fraud prevention.

The latter defines a behavioral-based anomaly detection. Cheating in online games

comes with many consequences for both players and companies; hence, cheating de-

tection and prevention is an important part of developing a commercial online game.

However, the task of manually identifying cheaters from the player population is un-

feasible to game designers due to the sheer size of the player population and lack

of test datasets. In our work, we present a novel approach to detecting cheating in

competitive multiplayer games using tools from hybrid intelligence and unsupervised

learning, and give proof-of-concept experimental results on real-world datasets.

vi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Challenges . 5

1.3 Thesis Outline . 7

2 Anomalous Network Intrusion Detection 11

2.1 Game Theory in Network Security . 11

2.1.1 Advanced Persistent Threats 11

2.1.2 Related Work . 13

2.1.3 Contributions . 15

2.2 Adaptive Learning for Multiplayer FlipIt Security Game 16

2.2.1 FlipIt: The Game of Stealthy Takeover 16

2.2.2 Markov Decision Process . 17

2.2.3 Q-Learning Based Model Architecture 20

2.2.4 Experimental Results . 23

2.3 Towards a More Resource-Efficient Learning in FlipIt 29

2.3.1 Cooperative Game Theory and Credit Assignment 29

2.3.2 Cooperation in Team-Based Multiplayer FlipIt 30

2.3.3 Shapley Q-Network Based Model Architecture 32

2.3.4 Reward System . 33

2.3.5 Experimental Results . 34

2.4 Discussion . 36

vii

3 Bad Actor Detection 39

3.1 Competition in Online Video Games 39

3.1.1 Cheating and Exploitation . 39

3.1.2 Related Work . 40

3.1.3 Contributions . 41

3.2 Collusion in Team-Based Multiplayer Games 42

3.2.1 Background . 42

3.2.2 Methodology . 44

3.2.3 Experimental Results . 55

3.3 Smurfs in Competitive Multiplayer Games 60

3.3.1 Background . 60

3.3.2 Methodology . 63

3.3.3 Experimental Results . 67

3.4 Discussion . 77

4 Concluding Remarks 79

4.1 Summary . 79

4.2 Contributions . 80

4.3 Future Work . 81

References 84

Curriculum Vitae 89

viii

List of Tables

3.1 Gameplay statistics for Dataset 1 and Dataset 2. 47

3.2 Gameplay data for 5 confirmed pairs of colluders from Dataset 2. . . 52

3.3 Top 5 outliers with the lowest anomaly scores detected in both datasets

studied. 59

3.4 Gameplay data for 4 confirmed smurf accounts over the first 20 matches

played after registration. 68

3.5 Top 10 outliers detected with the lowest anomaly scores, i.e. the most

abnormal behavior compared to the rest of the dataset. 73

ix

List of Figures

2·1 Example run with incomplete or imperfect observability in FlipIt. . . . 18

2·2 Illustration of one DQN iteration in FlipIt. 21

2·3 Learning overtime averaged over 10 FlipIt simulations against renewal

strategies. 23

2·4 FlipIt simulations against renewal strategies over different move rates. 24

2·5 Learning overtime in larger action-spaced FlipIt. 26

2·6 3-Player FlipIt simulations. 28

2·7 Illustration of team-based multiplayer FlipIt opposing team 1 T1, com-

promised of two defenders and team 2 T2 compromised of one attacker. 31

2·8 Individual mean reward per episode during training in team-based mul-

tiplayer FlipIt, without knowledge-sharing. 35

2·9 Individual mean reward for time in possession per episode during train-

ing in cooperative multiplayer FlipIt, with knowledge sharing. 36

3·1 Teammate and opponent distance distribution and distances between

opponents. 48

3·2 Average rank difference for each pair of opponents from Dataset 1 and

2. For Dataset 2, we highlight the pairs of confirmed colluders in blue. 49

3·3 Social network illustrations of a set of players from both datasets. Sus-

pected and confirmed colluders are in red. 54

3·4 Visual representation of opponent rank differences with regards to their

average proximity to one another. 56

x

3·5 Initial analysis of gameplay dataset. 67

3·6 Cumulative kill progression of higher-skilled players as opposed to the

general population (in navy blue) over the first 20 matches played. . . 69

3·7 Scatter plot representing the anomaly scores assigned to each data

point in the gameplay dataset. 71

3·8 Scatter plot representing the anomaly scores assigned to each flagged

outliers. 72

3·9 Results obtained after running the isolation forest on the gameplay

dataset using the additional anti-cheat service features mentioned. . . 75

xi

List of Abbreviations

The list below must be in alphabetical order as per BU library instructions

or it will be returned to you for re-ordering.

ADL Anti-Defamation League
APT Adavanced Persistent Threats
BR Battle Royale
DQN Deep Q-Networks
FP False Positives
FPS First-Person Shooter
GP General Population
IDS Intrusion Detection System
IF Isolation Forests
IoT Internet of Things
LM Last Move
MARL Multi-Agent Reinforcement Learning
ML Machine Learning
MDP Markov Decision Process
MMR Match Making Rating
MO Manual Outliers
PUBG PlayerUnknown’s Battlegrounds
ReLU Rectified Linear Unit
RL Reinforcement Learning
SNA Social Network Analysis
TTP Tactics, Techniques and Procedures
XP Experience Points

xii

1

Chapter 1

Introduction

1.1 Background

With the rapid growth of digital gaming, there has been an increase in malicious

activity in competitive games. Malicious activity can be defined as any cyber-threat,

hacker or bad actor that attempts to compromise a system, exploit vulnerabilities or

disrupt the gaming user experience. With games integrating more social features and

relying more on connectivity, cyber-security threats such as information disclosure

and cyber-attacks are more common than ever (Whitney, 2020; Tan, 2021; Owaida,

2021). In particular, web application attacks against the gaming industry grew by

340% in 2020 (Takahashi, 2021), as more people turned to gaming during pandemic

lockdowns. Moreover, almost every online game includes some form of voice or text-

based chatting. Players continuously interact in real-time to either coordinate or

compete in multiplayer online video games, and while the interactivity is essential to

game-play dynamics, it also makes the game more open to cheating and other toxic

behaviors such as “griefing”. Griefing, which can be defined as the act of one player

intentionally disrupting another player’s game experience for personal pleasure and

possibly potential gain, is problematic in games as it ruins the integrity of the game

and could potentially impact the relationship between the gaming company and the

player community.

Many methods have since been proposed to detect malicious activity in online

and competitive multiplayer games (Kunreuther and Heal, 2003; Alpcan and Basar,

2

2010; Gueye et al., 2012; Yeung and Lui, 2008; Galli et al., 2011). However, most

approaches focus on attacks of known types and attempt to detect players using a

known cheating technique. With the rise of more complex malicious activity, there

has been a critical need for the development of adaptive and defending strategies and

more robust detection methods.

In Machine Learning (ML), anomaly detection has been wildly used in many

different domains such as fraud and malware detection, data-privacy protection and

cyber-physical attacks as it helps identify malicious activity more efficiently than

other software-oriented technologies. In particular, anomaly detection techniques

aim to identify rare events or observations that are considered suspicious because they

differ significantly from standard behaviors or patterns, i.e. data samples that do not

conform to an expected behavior. We can categorize anomaly detection techniques

into three main classes: supervised, semi-supervised and unsupervised techniques.

The choice of the anomaly detection approach essentially depends on the availability

of labeled datasets.

• Supervised anomaly detection. When labeled dataset is available, the most

common technique for anomaly detection is typically a classification method that

is trained using a dataset that has been labeled as ‘normal’ and ‘abnormal’ and

automatically classifies new observations into classes according to their corresponding

features. The shortcoming of supervised anomaly detection techniques is the lack of

labeled datasets in real-world scenarios, and labelling data manually is an expensive

and time consuming task.

• Semi-supervised anomaly detection. Semi-supervised techniques take ad-

vantage of large amounts of unlabeled data as well as a small number of labeled

data for training. Semi-supervised learning represents a more practical setting for

anomaly detection as there is a huge number of reliable normal examples available for

3

models to learn from with a relatively small set of anomalous data in real-world sce-

narios. However, the assumption that the unlabeled dataset only consists of normal

observations may cause inevitable performance degradation when a small number of

anomalous data is included.

• Unsupervised anomaly detection. With unsupervised learning, models do

not learn from labeled dataset. Instead, they learn by finding structure and patterns

from input features. As labeled data is relatively rare in real-world scenarios, unsu-

pervised approaches are generally more popular for anomaly detection. With that

said, since the anomalies we attempt to detect are generally specific, many outliers

detected in a completely unsupervised manner could correspond to noise and may

not fit the behavior we are looking to identify.

In this thesis, we analyze two major threats we find in online games and focus

in particular on competitive multiplayer games. One of the major security concerns

in cyber-security are Advanced Persistent Threats (APT). APTs are stealthy and

constant computer hacking processes which can compromise systems bypassing tra-

ditional security measures, in order to gain access to confidential information held

in that system for example. An APT attack is typically a long-term campaign; it

can remain undetected in the target’s system or network for an extended period of

time and the persistent nature of the threats make it more difficult for the defender

to protect against it. Originally used to describe intrusive activities against military

organizations, APTs have evolved and are no longer limited to the military domain.

As highlighted in several large-scale security breaches (Schwartz and Drew, 2011; Fal-

liere et al., 2011; Villeneuve et al., 2013), APTs are now targeting a wide range of

industries and governments, and there has been a critical need for the development of

cyber-security technologies and more robust defending strategies in order to mitigate

the impacts of these attacks. In online games, most APT attacks leverage phishing to

4

gain initial access. Phishing is a type of social engineering attack that is commonly

used to steal user data, including but not limited to account credentials and credit

card numbers. Typically, hackers target individuals with fake game updates or email

scams mimicking the gaming company, and trick people into revealing sensitive in-

formation to the attacker. Once obtained, this information is then used to conduct

fraudulent activity using their identity.

Another threat in competitive gaming is the presence of cheaters. With the in-

creasing popularity of online games, cheating has become a common method for users

to gain an unfair advantage over others. Many cheating complaints are generally asso-

ciated to First-Person Shooter (FPS) games, in particular Battle Royale (BR) games,

in which participants compete against one another in solo or team-based matches.

Cheating in online games is accomplished in many forms, with the most common

one being the use of an external cheating software that provides players with a com-

petitive edge including aimbots, world-hacking and speed-hacks among others. The

use of aimbots is a well known technique for cheating in FPS games and it allows

users to automatically aim at opponents with extreme efficiency. World-hacking gives

players the ability to exploit game bugs and to view more than what was intended by

the developer. As an example, world-hacking may allow the user to see beyond the

visibility range of game objects, through solid or opaque objects such as structures

and walls. Finally, speed-hacks allow players to move and gather resources from a

gaming environment faster than other legitimate players. All these cheating tools

boost player performance and allow them to gain an unfair advantage that is beyond

what normal gameplay would allow.

Cheating in games has many consequences on both players and video gaming com-

panies, and players are quick to express their discontent when they find themselves in

the presence of unfair competition. Therefore, leaving cheaters and trolls unpunished

5

negatively impacts the player base and quickly drives the majority of the community

away from the game.

1.2 Challenges

Anomaly detection is one of the most common use cases of ML and it has known a

lot of success in finding and identifying outliers to help prevent fraud, adversarial at-

tacks, and network intrusions that can otherwise compromise the gaming company’s

integrity. Numerous methods have since been proposed to improve the identification

and detection of malicious activity in these fields. However, most approaches focus on

attacks of known types and well defined cheating techniques. In other words, mod-

els are designed to detect specific behaviors based on behavioral patterns from past

examples (or a set of legal game rules in the case of cheating techniques), and any

behavior that follows those patterns or violates those rules is considered an anomaly.

For these reasons, it is important to develop systems that can learn efficiently with-

out relying on any labeled datasets, and to consider adaptive models to automate

the detection of threats in competitive multiplayer games. Unsupervised anomaly

detection techniques offer a great potential in settings with imperfect and incom-

plete information; they do not rely on any labeled dataset and can learn to detect

unknown anomalies by actively interacting with an environment. Nevertheless, our

system must overcome the following major challenges.

Real-world anomaly detection generally relies on some form of human interven-

tion. In online poker for example, participants who feel like they’ve been cheated

against may report their suspicions, and such reports may result in a more in-depth

investigation by human experts. As a community’s size increases, detecting cheaters

places a huge burden on the human experts in terms of responding to cheat com-

plaints. Manually inspecting each report is clearly unfeasible with the active players

6

numbers in the millions. Moreover, industries cannot solely rely on reports of ma-

licious activity that are brought to their attention by the community, as this could

cause many malicious activities to remain undetected.

Anomalous behaviors posing a security threat are not commonly encountered and

can take many forms. We typically have no prior-knowledge of the attacker’s strategy

or behavior and defining defensive strategies against stealthy attacks is non-trivial.

In addition, attackers can change their strategies during an attack and anomalous

behaviors may evolve due to different external factors. Hence, developing automated

detection systems that continuously monitor our environment, check for any intrusion

or threat and adapt to any change in behavior is necessary to minimize the possible

negative impacts caused by malicious activity.

The evaluation of unsupervised anomaly detection has also been a challenging

task in the research community. So far, the performance of unsupervised anomaly

detection techniques has often been evaluated by using labeled data sets. In other

words, the labels are not used by the algorithms during the training process, but only

for evaluating their results. This method is often referred to as external evaluation

approach. However, the shortcoming of the external methods is that they are not

applicable to real-world problems where labeled data is often rare or not available.

Moreover, while we would like to fully automate the detection of outliers in multi-

player games, human supervision and intervention is still required when using unsu-

pervised learning techniques in the context of cheating detection. When automating

the detection, unsupervised and semi-supervised learning techniques may generate a

number of False Positives (FP) in the detection. Falsely accusing an innocent player

can impact players and the relationship between the developer company and the

player community. Hence, it is necessary that we guarantee that no innocent player

is incorrectly banned from the game. Overall, for game industries, failing to catch

7

certain cheaters is still a more desirable outcome then banning a player that has been

falsely labeled as a cheater.

Finally, in the absence of labeled data, it becomes harder to define the boundary

separating a normal behavior from an anomalous one. We can approximate optimal

thresholds depending on different features, based on the distribution of gameplay

data points. However, a single threshold value will not accurately separate cheaters

from honest players as we usually find overlap between player behaviors in gameplay

data. Larger thresholds could produce more FP in our outcome, and while smaller

thresholds could generate lower false-positivity rates, they would also allow many

players to continue to cheat and remain undetected.

1.3 Thesis Outline

In our work, we present novel approaches that address the above mentioned challenges

in competitive multiplayer games with limited and incomplete information.

In Chapter 2, we describe a knowledge-based detection system for network intru-

sion in games, and show the benefits of combining solution concepts from game theory

and tools from machine learning to detect anomalous behaviors and improve learning

efficiency in partial-observable settings. Our model is based on understanding the

technology and strategy being used by the attacker and developing good defensive

mechanisms against stealthy attacks and intrusion. We describe a deep learning model

in which agents successfully adapt to different classes of opponents and learn the op-

timal counter-strategy using reinforcement learning. We apply our model to FlipIt, a

two-player security game in which both players, the attacker and the defender, com-

pete for ownership of a shared resource and only receive information on the current

state of the game upon making a move. Our model is a deep neural network combined

with Q-learning and is trained to maximize the defender’s time of ownership of the

8

resource. Despite the noisy information, our model successfully learns cost-effective

counter-strategies outperforming its opponent’s strategies and shows the advantages

of the use of deep reinforcement learning in game theoretic scenarios. We also extend

the work to a larger action-spaced FlipIt with the introduction of a new lower-cost

move and generalize the model to multiplayer FlipIt.

When resources such as memory, storage and processing powers are limited, coor-

dination is needed across multiple detection services and an efficient use of resources

is necessary to maintain an acceptable level of system performance. In the second

part of Chapter 2, we analyze a team-based version of the FlipIt security game, and

analyze cooperative strategies. Generally, in partially observable cooperative games,

agents tend to maximize their global rewards with joint actions; therefore it is dif-

ficult for each agent to deduce their own contribution. When actions are stealthy,

assigning a shared global reward directly to each agent may give each agent an inac-

curate reward on its contribution to the group, which could cause inefficient learning.

For these reasons, we also propose a multi-agent reinforcement learning algorithm,

in which a team of agents adapts to different classes of opponents and learn optimal

collaborative behavior using reinforcement learning combined with tools from game

theory. We apply our model to team-based multiplayer FlipIt, in which both teams of

attackers and defenders compete for ownership of a shared resource. Our model is a

deep neural network combined with Q-learning, using Shapley Q-value as the critic

for each agent. Despite the partial observability throughout the game, our model is

able to fairly distribute the global reward reflecting each agent’s own contribution to

their team’s success, in contrast to the shared reward approach, and allows agents

to learn collaborative behaviors instead of resorting to dropping out of the game and

relying solely on their teammates.

Chapter 3 focuses on behavioral-based detection. With the absence of labeled

9

datasets, we turn to techniques from unsupervised learning and develop a system

where heuristics based on user behavior are used to detect potential cheaters in real-

wold competitive multiplayer video games.

As e-sports games become more popular, disruptive and toxic behaviors have

become more significant. We find more players that turn to cheating in order to

gain an unfair advantage, with the most common cheating techniques being the use

of external cheating software and game hacks to improve a player’s performance.

The task of manually identifying cheaters from the player population is infeasible to

game designers due to the sheer size of the player population. Cheating in games

has many consequences in the gaming industry and cheaters need to be detected as

quickly as possible to minimize any impact. The work we introduce in this chapter

is aimed at helping and improving game designers’ current workflow with the task of

identifying players that are cheating in their game and focus on behaviors that are

not necessarily based on the use of external cheating software, nor do they explicitly

violate the rules of the game. We propose a system that is based on a player’s

in-game behavioral patterns, and that detects and highlights the players exhibiting

such cheating behaviors in competitive multiplayer games. Our system does not

take any action on the identified cheaters as it is important and necessary to be

extremely careful with false positives when automating the detection; instead, the

set of suspected cheaters is provided to the game designers for further analysis who,

in turn, can take enforcement actions against the players, if they find it necessary.

The proposed method analyzes the players’ social relationships paired with their in-

game behavioral patterns and, using tools from graph theory, infers a feature set

that allows us to detect and measure the degree of collusion exhibited by each pair of

players from opposing teams. We then automate the detection using Isolation Forests,

an unsupervised learning technique specialized in detecting outliers, and show the

10

performance and efficiency of our approach on real-world datasets.

Chapter 4 concludes the thesis with a summary of our work and contributions and

discusses future work.

11

Chapter 2

Anomalous Network Intrusion Detection

2.1 Game Theory in Network Security

2.1.1 Advanced Persistent Threats

With the large-scale growth of the Internet of Things (IoT) in recent years, there has

been increasing needs for research in the area of cybersecurity. And with the rise in

popularity of online games, and the increasing reliance in connectivity in multiplayer

online games, the gaming industry has become a common target for several cyber-

attacks, including but not limited to compromised servers, social engineering and

identify theft. Cyber-attacks can be defined as any set of actions performed by

cybercriminals, bad actors or hackers who try to gain unauthorized access, steal data

or cause damage to networks. The attack can be performed by an individual working

alone or by a group of cybercriminals using one or more tactics, techniques and

procedures (TTPs). These individuals attempt to identify vulnerabilities, problems

or weaknesses in computer systems and exploit them to achieve their goals.

Game theory has been commonly used for modeling and solving cybersecurity

problems. When payoff matrices are known by all parties, one can solve the game by

calculating the Nash equilibrium of the game and by playing one of the corresponding

mixed strategies to maximize its gain (or symmetrically, minimize its loss). Nash

equilibrium (Nash, 1950) is a solution concept that describes a steady state condition

in a game, that is, an optimal outcome where no player has anything to gain by

changing only their strategy. The assumption that the payoff is fully known by all

12

players involved is often too strong to effectively model the type of situations that arise

in practice. It is therefore useful to consider the case of incomplete information and

apply reinforcement learning methods which are better suited to tackle the problem

in these settings. In particular, in this chapter, we examine the two-player game

FlipIt (van Dijk et al., 2013) where an attacker and a defender compete over a shared

resource and where agents deal with incomplete observability.

The principal motivation for the game FlipIt is the rise of Advanced Persistent

Threats (APT) (Schwartz and Drew, 2011; Falliere et al., 2011; Villeneuve et al.,

2013). APTs are stealthy and constant computer hacking processes which can com-

promise a system or a network security and remain undetected for an extended period

of time. Such threats include intellectual property theft, host takeover and compro-

mised security keys, caused by network infiltration, typically of large enterprises or

governmental networks. We assume that a move by the attacker in FlipIt is a cam-

paign that results in control over essential target resources through a breach of the

system, while a move by the defender is a system-wide remediation campaign through

defensive precautions. For example, for host takeover, the goal for the attacker is to

compromise the device, while the goal for the defender is to keep the device clean

through re-installation of critical servers or global password refresh.

In online games, most APT attacks leverage phishing to gain initial access. Phish-

ing is a type of social engineering attack that is often used to steal user data such as

login credentials and credit card numbers. Attackers usually pose as a trusted entity

(such as the gaming company) and tricks an individual into clicking a malicious link

in an email for example, which can lead to the installation of malware or the revealing

of sensitive information as part of a ransomware attack.

Defending against APTs is a challenging task due to their stealthy structure, and

the uncertainty regarding attacker moves. Traditionally, network security solutions

13

employ either protective devices such as firewalls or reactive devices such as Intru-

sion Detection Systems (IDS). However, current IDS are not very sophisticated and

they rely on ad-hoc schemes and experimental work. While defenders can attempt

to prevent intrusions by patching any known vulnerabilities or by closing potential

network backdoors, adaptive strategies are necessary to defend against dynamic at-

tacking strategies. As APTs are stealthy and remain persistent in the system for a

long time, it is important that our system detects the intrusion as quickly as possible

to minimize any potential damage caused by the attack. Additionally, limited defen-

sive resource availability along with the performance and memory overhead imposed

by the defensive mechanism on the system may require resource-efficient detection

techniques.

2.1.2 Related Work

Although game theory models have been greatly applied to solve cybersecurity prob-

lems, such as intrusion detection and network security (Kunreuther and Heal, 2003;

Alpcan and Basar, 2010; Gueye et al., 2012), studies mainly focused on developing

defensive mechanisms to defend against well-defined attack schemes. And while this

research is important, few studies have focused on situations with imperfect and noisy

observations and threats of unknown types. In our work, we examine the two-player

game FlipIt, first introduced by by van Dijk et al (van Dijk et al., 2013). FlipIt is

the first model that characterizes the persistent and stealthy properties of APTs and

is a suitable model to formally represent the strategic interactions between agents

while capturing constraints on attacker incentives, defense resource allocations and

attack impacts. In their paper, they analyze multiple instances of the game with non-

adaptive strategies and show the dominance of certain distributions against stealthy

opponents. They also show that the Greedy strategy is dominant over different distri-

butions, such as periodic and exponential distributions, but is not necessarily optimal.

14

Different variants and extensions of the game have also been analyzed; these include

games with additional “insider” players trading information to the attacker for mone-

tary gains (Hu et al., 2015; Feng et al., 2015), games with multiple resources (Laszka

et al., 2014) and games with different move types (Pham and Cid, 2012). In all these

variants, only non-adaptive strategies have been considered and this limits the anal-

ysis of the game framework. Laszka et al. (Laszka et al., 2013a; Laszka et al., 2013b)

proposed a study of adaptive strategies in FlipIt, but this was done in a variant of the

game where the defender’s moves are non-stealthy and non-instantaneous.

Machine Learning (ML) has also been commonly used in different cybersecurity

problems such as fraud and malware detection (Buczak and Guven, 2016; Milosevic

et al., 2017), data-privacy protection (Xiao et al., 2018) and cyber-physical attacks

(Ding et al., 2018). It has allowed the improvement of attacking strategies that can

overcome defensive ones, and vice-versa, it has allowed the development of better

and more robust defending strategies in order to prevent or minimize the impact of

these attacks. Reinforcement Learning (RL) is a particular branch in ML in which

an agent interacts with an environment and learns from its own past experience

through exploration and exploitation without any prior or with limited knowledge

of the environment. RL and the development of deep learning have lead to the

introduction of Deep Q-Networks (DQNs) to solve larger and more complex games.

DQNs were firstly introduced by Mnih et al. (Mnih et al., 2013) and have since

been commonly used for solving games such as backgammon, the game of Go and

Atari (Silver et al., 2017; Silver et al., 2016; Mnih et al., 2015). They combine

deep learning and Q-learning (Sutton and Barto, 2018; Watkins and Dayan, 1992)

and are trained to learn the best action to perform in a particular state in terms

of producing the maximum future cumulative reward. Hence, with the ability of

modeling autonomous agents that are capable of making optimal sequential decisions,

15

DQNs represent the perfect model to use in an adversarial environment such as FlipIt.

Our work extends the research made in stealthy security games with the introduction

of adaptive DQN-based strategies allowing agents to learn a cost-effective schedule

for defensive precautions in FlipIt and its variants, all in real-time.

2.1.3 Contributions

Our goal is to learn effectively how often should the defender clean the machines and

predict when the attacker will launch its next attack. Hence, the problem can be

formulated as finding a cost-effective schedule through reinforcement learning. In our

work, we train our model to estimate an opponent’s strategy and to learn the best-

response to that strategy. Since these estimations highly depend on the information

the model gets throughout the game, the challenge comes from the incomplete and

imperfect information received on the state of the game. The goal is for the adaptive

agents to adjust their strategies based on their observations and good FlipIt strategies

will help players implement their optimal cost-effective schedule. In section 2.2, we

present previous related studies and provide a description of the game framework as

well as its variants. We then describe our approach to address the problem of learning

in partial observability and our model architecture (Greige and Chin, 2022a). We

demonstrate successful counter-strategies developed by adaptive agents against basic

renewal strategies and compare their performance in the original version of FlipIt to

one with a larger action-space after introducing a lower-cost move. We also generalize

these findings to multiplayer FlipIt where a defender is opposed to multiple attackers.

In section 2.3, we discuss the advantages of coordinating multiple defensive mech-

anisms to tackle APTs in online games and introduce a cooperative and team-based

extension to the multiplayer version of FlipIt (Greige and Chin, 2022b). Generally, in

cooperative games, agents tend to maximize their global rewards with joint actions;

therefore it is difficult for each agent to deduce their own contribution. When ac-

16

tions are stealthy, assigning a shared global reward directly to each agent may give

each agent an inaccurate reward on its contribution to the group, which could cause

inefficient learning. We propose a multi-agent reinforcement learning algorithm, in

which a team of agents adapts to different classes of opponents and learns optimal

collaborative strategies using reinforcement learning combined with tools from game

theory. We apply our model to team-based multiplayer FlipIt, and use concept tools

from game theory to efficiently and fairly distribute gains and costs to individuals

in a same coalition. Our model is a deep neural network combined with Q-learning,

using Shapley Q-value as the critic for each agent.

In section 2.4, we conclude the chapter with a summary of our work, and dis-

cuss future work and possible improvements to our model to encourage the ongoing

research on cyber-attack detection and mitigation in online video games.

2.2 Adaptive Learning for Multiplayer FlipIt Security Game

2.2.1 FlipIt: The Game of Stealthy Takeover

FlipIt is an infinitely repeated game where the same one-shot stage game is played

repeatedly over a number of discrete time periods. At each period of a game, players

decide what action to take depending on their respective strategies. They take control

of the resource by moving, or by what is called “flipping”. Flipping is the only move

option available and each player can flip at any time throughout the game. We assume

that the defender is the rightful owner of the resource and as such, ties are broken by

assigning ownership to the defender. Each player pays a certain move cost for each flip

and is rewarded for time in possession of the resource. For our purpose we have used

the same reward and flip cost for all players (attackers and defenders, adaptive and

non-adaptive), but our environment can be easily generalized in order to experiment

with different rewards and costs for both players. Moreover, an interesting aspect in

17

FlipIt is that contrary to games like Backgammon and Go, agents do not take turn

moving. A move can be made at any time throughout the game and therefore a

player’s score highly depends on its opponent’s moves. The final payoff corresponds

to the sum of the player’s payoffs from each round. Finally, players have incomplete

information about the game as they only find out about its current state once they

flip. In particular, adaptive agents only receive feedback from the environment upon

flipping, which corresponds to their opponent’s last move (LM).

Unless stated otherwise, we assume in the remainder of the this chapter that

the defender is the initial owner of the resource, as is usually the case in real-world

scenarios. The defender is considered to be LM playing a DQN-based strategy against

an attacker playing one of the renewal strategies described in the following section.

2.2.2 Markov Decision Process

Our environment is defined as a Markov Decision Process (MDP). At each iteration,

agents select an action from the set of possible actions A. In FlipIt, the action space is

restrained to two actions: to flip and not to flip. As previously mentioned, agents do

not always have a correct perception of the current state of the game. In Figure 2·1,

we oppose an LM agent P1 and a periodic agent P2 with period δ = 3 and describe

an example run with partial observability. When P1 flips at iteration 9, the only

feedback it receives from the environment concerns its opponent’s flip at iteration 6.

Hence, no information is given regarding the opponent’s previous flip at iteration 3

and P1 is subjected to an incorrect assumption on the time it controlled the resource.

Suppose P1 claims ownership of the resource at iteration 9. Then, P1’s benefit would

be equal to the sum of the operational cost of flipping and the reward for being in

control of the resource, which is represented by τP1 in the figure below.

18

P1

P2

τ1
P1

Figure 2·1: Example run with incomplete or imperfect observability
in FlipIt.

• State Space. Players only receive information regarding the current state

of the game once they flip, causing imperfect information throughout the game as

previously illustrated. Since players only have partial observability, we consider a

discrete state space such that each state indicates the current state of the game, that

is, the times elapsed since each player’s last known flips.

• Action Space. In the original version of FlipIt, the only move option available

is to flip. An adaptive agent therefore has two possible actions: to flip or not to

flip, and the action spaces are denoted by Ad = {idle, flip} for the defenders and

Aa = {idle, flip} for the attackers. In the larger action-spaced extension of FlipIt,

we introduce a new move called check. This move allows an agent to check the current

state of the game and obtain information regarding its opponents’ last known moves,

all while paying a lower operational cost than the one of flipping. Just like flipping, an

agent can check the state of the game at any time during a game and the defender’s

action space is therefore denoted by A′
d = {idle, flip, check}. The attacker’s action

space remains unchanged.

• State Transitions. Since an agent can move at any time throughout the

game, it is possible that two agents involved flip simultaneously and ties are broken

by automatically assigning ownership to one of the defenders. At each iteration, the

state of the game updates as follows. If any of the defenders flip, the resource is

19

assigned to the defender. If a set of defenders on the same team flipped at the same

time step, ties are broken by randomly assigning the resource to one of the defenders

from that set of players. If no defensive player flipped and the attacker flipped, the

resource is assigned to the attacker. Finally, if no player flipped, the current owner of

the resource remains unchanged. The transition from one state to another therefore

only depends on the current state of the game and the actions taken in that state

and the state transition function T is defined by T : S ×Ad ×Aa → ∆(S).

• Reward System. We define the immediate reward at each iteration based on

the action taken as well as the owner of the resource at the previous iteration.

i) Operational Costs and Payoff. Let rt be the immediate reward received

by an agent at time step t. We have,

rt =


0 if no play

− Cc if at = check

τ · r − Cf if at = flip

(2.1)

where r is the payoff given for owning the resource at one time step, Cc is the oper-

ational cost of checking and Cf the operational cost of flipping. τ defines the time

elapsed between the agent’s last flip move and the time step he last owned the resource

previous to its current flip, as described in Figure 2·1.

ii) Discount Factor. Let γ be the discount factor. The discount factor de-

termines the importance of future rewards, and in our environment, a correct action

at some time step t is not necessarily immediately rewarded. In fact, by having a

flip cost higher than a flip reward, an agent is penalized for flipping at the correct

moment but is rewarded in future time steps. This is why we set our discount factor

γ to be as large as possible, giving more importance to future rewards and forcing

our agent to aim for long term high rewards instead of short-term ones.

20

• Renewal Strategies. Three renewal strategy categories have been introduced

and analyzed in previous research: periodic strategies, periodic with random phase

strategies and exponential strategies. Players following periodic strategies Pδ flip

every δ iterations, regardless of the current state of the game. Players following a

periodic with random phase strategies P ′
δ initially flip uniformly at random at time

step t ∈ [0, δ], with subsequent flips occurring periodically every δ iterations. Finally,

players following an exponential strategies Pλ are such that the intervals between two

flips are distributed according to an exponential, memoryless distribution with rate λ.

2.2.3 Q-Learning Based Model Architecture

Q-learning is a reinforcement learning algorithm in which an agent or a group of

agents try to learn the optimal policy from their past experiences and interactions

with an environment. These experiences are a sequence of state-action-rewards. In

its simplest form, Q-learning is a table of values for each state (row) and action

(column) possible in the environment. Given a current state, the algorithm estimates

the value in each table cell, corresponding to how good it is to take this action in

this particular state. At each iteration, an estimation is repeatedly made in order to

improve the estimations. This process continues until the agent arrives to a terminal

state in the environment. This becomes quite inefficient when we have a large number

or an unknown number of states in an environment such as FlipIt. Therefore in

these situations, larger and more complex implementations of Q-learning have been

introduced, in particular, Deep Q-Networks (DQN).

21

state s

Policy
π∗(s, a)

Adaptive Agent Game Environment

state st+1

reward rt+1

action at

Figure 2·2: Illustration of one DQN iteration in FlipIt.

Deep Q-Networks were firstly introduced by Mnih et al. (Mnih et al., 2013) and

have since been commonly used for solving games. DQNs are trained to learn the

best action to perform in a particular state in terms of producing the maximum

future cumulative reward and map state-action pairs to rewards. Our objective is to

train our agent such that its policy converges to the theoretical optimal policy that

maximizes the future discounted rewards. In other words, given a state s we want to

find the optimal policy π∗ that selects action a such that a = argmaxa [Qπ∗(s, a)]

where Qπ∗(s, a) is the Q-value that corresponds to the overall expected reward, given

the state-action pair (s, a). It is defined by,

Qπ∗(s, a) = Eπ

[
rt + γrt+1+γ2rt+2 + ...+ γT−trT

∣∣∣ st = s, at = a
]

(2.2)

where T is the length of the game. Q-values are updated for each state and action

using the following Bellman equation,

22

Qn(s, a) = Q(s, a) + α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.3)

where Qn(s, a) and Q(s, a) are the new and current Q-values for the state-action pair

(s, a), R(s, a) is the reward received for taking action a at state s, maxa′ Q(s′, a′) is

the maximum expected future reward given new state s′ and all possible actions from

state s′, α is the learning rate and γ the discount factor.

Our model architecture consists of 3 fully connected layers with rectified linear

unit (ReLU) activation function at each layer. It is trained with Q-learning using the

PyTorch framework (Paszke et al., 2017) and optimized using the Adam optimizer

(Kingma and Ba, 2014). We use experience replay (Wang et al., 2016) memory to

store the history of state transitions and rewards (i.e. experiences) and sample mini-

batches from the same experience replay to calculate the Q-values and update our

model. The state of the game given as input to the neural network corresponds to

the agent’s current knowledge on the game, i.e. the time passed since its last move

and the time passed since its opponent’s last known move. The output corresponds

to the Q-values calculated for each action. The learning rate is set to 0.001 while

the discount factor is set to 0.99. We value exploration over exploitation and use

an ϵ-Greedy algorithm such that at each time step a random action is selected with

probability ϵ and the action corresponding to the highest Q-value is selected with

probability 1 − ϵ. ϵ is initially set to 0.6 and is gradually reduced at each time step

as the agent becomes more confident at estimating Q-values.

23

Figure 2·3: Learning overtime averaged over 10 FlipIt simulations
against renewal strategies.

We choose 0.6 as it yields the best outcome regardless of the attacker’s strategy. In

particular, we find that, despite eventually converging to its maximal benefit, higher

exploration values can negatively impact learning while lower exploration values can

cause a slower convergence.

2.2.4 Experimental Results

In what follows, we assume that opponent move rates are such that the expected

interval time between two consecutive flips is larger than the flip move cost. We

trained our neural network to learn the best counter-strategy to its opponent’s such

that the reward received for being in control of the resource is set to 1 and the cost of

flipping is set to 4. The flip cost is purposely set to a higher value than the reward in

order to discourage the defender from flipping at each iteration. The following results

can be generalized to any cost value that is greater than the reward.

Renewal Strategies

A renewal process is a process which selects a renewal time from a probability dis-

tribution and repeats at each renewal. For our purpose, a renewal is a flip and our

renewal process is 1-dimensional with only a time dimension. There are at least two

24

properties we desire from a good strategy. First, we expect the strategy to have some

degree of unpredictability. A predictable strategy will be susceptible to exploitation,

in that a malignant or duplicitous opponent can strategically select flips according to

the predictable flips of the agent. Second, we expect a good strategy to space its flips

efficiently. Intuitively, we can see that near simultaneous flips will waste valuable re-

sources without providing proportionate rewards. In what follows, we examine three

basic renewal strategies for the attacker, periodic Pδ, periodic with a random phase

P ′
δ and exponential Eλ, as they present different degrees of predictability and spacing

efficiency.

(a) Periodic P10 (b) Periodic

(c) PeriodicR (d) Exponential

Figure 2·4: FlipIt simulations against renewal strategies over different
move rates.

25

In general, the optimal strategy against any periodic strategy can be found and

maximal benefits can be calculated. Since the defender has priority when both players

flip simultaneously, the optimal strategy would be to play the same periodic strategy

as its opponent’s as it maximizes its time of ownership of the resource and reaches

maximal benefit. Considering that the cost of flipping is set to 4 and each game is

played over 400 iterations, then the theoretical maximal benefit for an adaptive agent

playing against a periodic agent with a period δ = 10 would be equal to 200. We

oppose an LM adaptive agent to a periodic agent P10 and show that with each game

episode, the defender’s final score does in fact converge to its theoretical maximal

benefit in Figure 2·4a.

In Figures 2·4b, 2·4c and 2·4d, we plot the average final scores after convergence of

the defender reward against periodic, periodic with a random phase and exponential

strategies, with regards to the opponent strategy parameter. All scores are averaged

over 10 runs. In all 3 cases, the defender converges towards its maximal benefit and

drives its opponents to negative ones, penalizing them at each action decision. It out-

performs all renewal strategies mentioned, regardless of the strategy parameters, and

learns the corresponding optimal counter-strategy even against exponential strategies

where the spacing between two consecutive flips is random. A more in-depth look

into the strategies developed shows that the adaptive agent playing against Pδ and P ′
δ

learns a strategy where the distribution of wait intervals concentrates on δ whereas

the one playing against Eλ learns a strategy with a wider spread, spacing its flips

efficiently throughout the game. We find that the defender’s final score decreases as

the attacker move rate increases. This can be explained by the fact that a higher

strategy parameter suggests flipping more often and causes the defender to also flip

more frequently to counter the attacker, thus causing the overall reward to decrease.

Moreover, higher move rates cause shorter interval times between two consecutive

26

flips and this increases the risk of flipping at an incorrect iteration which could pe-

nalize the defender; as a matter of fact, in the general case, the worst-case scenario,

flipping one iteration before each of its opponents flips, is only one shift away from

the optimal strategy, flipping at the same time as the opponents. Despite the de-

creasing final scores, the defender learns to efficiently counter-attack its opponents,

thus maximizing its time of ownership of the resource.

Larger Action-Spaced FlipIt Extension

We compare the defender’s performance in the original version of FlipIt with one

where the adaptive agent’s action space is now A′
d = {idle, flip, check}. We set

the operational cost for checking the current state of the game to 1 as a way to

compensate for the benefit of owning the resource at time step t and we run the same

experiments against the renewal strategies in 2-player FlipIt.

(a) Periodic (b) PeriodicR (c) Exponential

Figure 2·5: Learning overtime in larger action-spaced FlipIt.

In Figure 2·5, the top figures represent the defender’s reward per episode while

the bottom ones represent the defender’s final reward after convergence against each

27

renewal strategies depending on their move rates, and averaged over 10 runs. With the

attacker’s final rewards being in the negatives, the defender succeeds in preventing any

type of intrusion, regardless of the attacker’s strategy. The defender reaches optimal

benefits against all renewal strategies, regardless of strategy parameter. Overall, the

defender spends less on operational costs with the additional of the lower-cost move

and learns just as fast and efficiently. When we cannot afford to take system-wide

defensive precautions quite as often, the addition of a lower-cost actions that allow

defenders to receive additional feedback from the environment can be beneficial in

learning the cost-effective defensive strategy, without having to spend more in terms

of move operational costs.

Multiplayer FlipIt

Finally, we extend the game to n players, to illustrate scenarios where a system is

under multiple attacks. In multiplayer FlipIt, we assume that one defensive agent is

playing against multiple attackers, each attacker working alone or as a group, and

competing over a shared resource. The goal for the defender remains the same, and

that is, to learn all attacking strategies and develop an efficient counter-strategy. As

the state of the game corresponds to the agent’s knowledge of the game (i.e. its

opponent’s last known moves), the state size increases as the number of attackers

increase. We examine our model by opposing the adaptive defender to a combination

of two opposing agents. Players’ final rewards are averaged over 10 runs and are

plotted in Figure 2·6, such that darker colors correspond to higher benefits. We

illustrate the results obtained in 3-player FlipIt for a clearer visualisation. However,

all findings can be extended to (n > 3)−players.

28

Figure 2·6: 3-Player FlipIt simulations.

As a reminder, we assume that the defender is the rightful owner of the resource

and therefore has priority when assigning the resource to a new owner, in the case

of simultaneous flips. Consider the case where an adaptive agent plays against two

periodic agents with the same move rate δ. Then this would be equivalent to playing

against one periodic agent with move rate δ, and we obtain the same results as 2-

player FlipIt. Now assume both attackers have different move rates. Hypothetically,

29

this scenario would be equivalent to playing against an agent such that its strategy

is a combination of both periodic agent strategies. An in-depth look at the strategy

learned by the defender shows that the agent learns both strategy periods and spaces

its flips accordingly. When opposed against a periodic agent Pδ and an exponential

agent Eλ, the defender develops a strategy such that each two flips are efficiently

spaced throughout the game, allowing the adaptive agent to converge towards its

maximal benefit. As is the case in 2-player FlipIt, the higher the move rates, the

smaller the intervals between two consecutive flips are which drives the defender to

flip more frequently and causes lower overall final benefit. Nonetheless, the defender

develops dominant strategies that yields maximal benefit, regardless of its opponents

and opponent move rates.

2.3 Towards a More Resource-Efficient Learning in FlipIt

2.3.1 Cooperative Game Theory and Credit Assignment

In this section, we introduce a team-based extension to multiplayer FlipIt game to

study the potential interactions between multiple adaptive defensive agents. This

is useful in cases where resources such as memory, storage and processing powers

are limited and coordination is needed across multiple detection services to maintain

acceptable levels of system performance. Because of the persistent nature of APTs, it

is also important for the system to quickly detect intrusion to minimize any potential

damage caused by the attack. For these reasons, our goal in cooperative multiplayer

FlipIt is to develop quick and resource-efficient defensive strategies.

Cooperative game theory is a critical research in multi-agent reinforcement learn-

ing (MARL). It addresses the sequential decision-making problem of multiple au-

tonomous agents that operate in an environment, each of which aims to collabora-

tively optimize a collective long-term payoff return. The main challenge in cooperative

30

settings is credit assignment, that is, the task of attributing a global shared reward to

each individual agent involved in the cooperation. Ideally, in cooperative team-based

FlipIt, agents would coordinate their defensive moves and learn a collaborative and

resource-efficient defensive strategy against any attacker.

Credit assignment is an important problem studied in the global reward game.

Most research on cooperative game theoretical models use the shared reward ap-

proach to force cooperation (Lowe et al., 2017; Das et al., 2018; Kim et al., 2019),

that is, each agent is assigned a equal share of the global reward directly. However,

this approach may give each individual an inaccurate reward regarding its contribu-

tion to the group, and hence cause inefficient learning. Similar to most multi-agent

cooperation problems, we want to deduce the individual contribution of each defender

to the team’s success and reward them depending on their contribution. Identifying

the contribution of each defender will be beneficial for more effective coordination,

which could lead to better defensive mechanisms and in our work, we propose the

use of Shapley values (Shapley, 1953) to distribute the global reward to each agent,

reflecting accurate representation of the agent’s contribution towards the team, and

improve learning efficiency using DQNs.

2.3.2 Cooperation in Team-Based Multiplayer FlipIt

We define team-based multiplayer FlipIt such that two opposing teams of players vie

for control of a resource; one team consisting solely of defenders (i.e. adaptive agents)

and the other of one or more attackers adopting one of the renewal strategies. We

analyze two cases; one where players share their knowledge with there respective team-

mates, and another where they don’t communicate. In the case of knowledge-sharing,

this would mean that when agent i flips and receives new information regarding the

state of the game, this information is also shared with all its teammates.

31

T1

T2

τ1
P1

τ2
P2

(a) Example run

T1

T2

τ1
P1 P1

(b) Outcome using the model from (Greige and Chin, 2022a)

T1

T2

τ1
P1

τ2
P2

(c) Expected optimal outcome

Figure 2·7: Illustration of team-based multiplayer FlipIt opposing
team 1 T1, compromised of two defenders and team 2 T2 compromised
of one attacker.

We assume all adaptive agents to be last-move (LM) as defined in (van Dijk

et al., 2013; Greige and Chin, 2022a). In other words, agents receive information

on the current state of the game upon flipping, that is, they receive information

regarding all other players’ last known moves. We illustrate an example run with two

opposing teams in Figure 2·7: defensive team T1 in blue, compromised of two players

P1 and P1, and an attacking team T2 in red, compromised of one player adopting a

periodic strategy with period δ = 0.25. In particular, in Figure 2·7a, when P1 and P2

flip respectively at iterations 1 and 3, they receive information regarding T2’s flip at

32

iteration 0. However, at their next flips at iterations 8 and 11, the only information

they receive regards T2’s flip at iteration 8 (as it is the opponent’s most recent flip)

and none regarding the flip at iteration 4; hence, players are subjected to incorrect

assumptions regarding the opponent’s strategy throughout the game. In Figure 2·7b,

we illustrate the current outcome when using the approach from (Greige and Chin,

2022a) in team-based multiplayer FlipIt. While player P1 from team T1 learns the

opponent’s strategy and develops an optimal counter-strategy, player P2 develops

what refer to as a “drop-out” strategy, where P2 remains idle throughout the game

and relies solely on its teammate. In Figure 2·7c, we illustrate one possible optimal

outcome where players from team T1 learn a cooperative counter-strategy against the

attacker’s strategy.

2.3.3 Shapley Q-Network Based Model Architecture

Shapley value was first introduced in 1951 and it is used to fairly attribute rewards to

each player involved in a coalition, depending on their contribution to the coalition.

In particular, it ensures that each player gains as much (or more) as they would have

from acting independently. In other words, suppose we have a cooperative game where

a set of players cooperate and collaborate towards a common goal. If we can measure

the total payoff of the game, Shapley values capture the marginal contribution of each

player to the end result. Let N denote the set of n players in the game. For any

S ⊆ N \ {i}, let ϕi(S) = (v (S ∪ {i})− v(S)) be the marginal contribution for player

i. Given a coalitional game (v,N), the payout amount that player i receives is equal

to the following.

Shi(v) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
· ϕi(S) (2.4)

In cooperative team-based FlipIt, adaptive agents cooperate to efficiently learn

33

the best counter-strategy against attackers and intruders. Our goal is for both DQNs

on a same team to work and cooperate together to achieve the same goal, which

is to defend the resource from any intrusion or attack. DQNs were introduced to

bring the advantages of deep learning to reinforcement learning methods. They are

based on a more complex implementation of Q-learning algorithm, in which an agent

tries to learn the optimal policy from their past experiences and interactions with an

environment. The ‘Q’ in Q-learning stands for quality, and it refers to the function

the algorithm computes, that is, the expected rewards for an action taken in a given

state. The agent therefore acts in a way that maximises this Q-value function.

To improve learning efficiency in cooperative team-based FlipIt, we use the Shapley

value for reward assignment to each player. According to Equation 2.4 and given the

coalitional game (v,N) and state-action pair (s, a(i), the Shapley Q-value of each

agent can be written as follows.

Qϕi(s, a(i)) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
· ϕi(S) (2.5)

such that,

ϕi(S) = Q
S∪{i}
π∗ (s, a(i)i∈S∪{i})−QS

π∗(s, a(i)i∈S) (2.6)

As in multiplayer FlipIt, Q-values are then updated for each state and action using

the Bellman equation described in the previous subsection.

2.3.4 Reward System

While the action and state spaces as well as the state transitions remain unchanged,

the reward system differs slightly. Let r(i)t be the immediate reward received by

agent i at time step t. Let T (i) represent agent i’s teammate. The reward function

34

utilized in training is as follows.

r(i)t =


0 if a(i)t = no flip, ∀i ∈ [1, 2]

τ · r − Cf if a(i)t = flip

τ · r if a(T (i))t = flip

(2.7)

The main difference in reward function (2.7) is that an agent is also rewarded if a

teammate regains possession of the resource but does not pay any operational cost for

that move. In other words, we take into consideration teammate actions and reward

the team for a correct move.

r(i)1t =


0 if no play

τ · r − Cf if a(i)t = flip

(2.8)

We utilize reward function (2.8) as defined in 2-player FlipIt to represent an individual

player’s contribution (individual time in posession, minus the operational costs spent)

and gather more insights on the player’s learnt strategy.

2.3.5 Experimental Results

In what follows, two adaptive agents are trained over 4000 episodes, with each game

lasting 1000 steps, against one attacker adopting one of the renewal strategies de-

scribed earlier. Our model architecture is the same as the one described in section

2.2.3. Learning rate is set to 10−4 and the remaining model hyperparameters are left

unchanged. In Figure 2·8, we plot the individual rewards per episode for each agent

in team-based multiplayer FlipIt.

35

(a) Individual mean reward for time in possession per episode during training
in non-cooperative multiplayer FlipIt.

(b) Individual mean reward for time in possession per episode during training
in cooperative multiplayer FlipIt.

Figure 2·8: Individual mean reward per episode during training in
team-based multiplayer FlipIt, without knowledge-sharing.

First, we train teams without forcing cooperation, in other words, we update Q-

values as defined in non-cooperative FlipIt, following Equation 2.3. In Figure 2·8a,

we plot player’s individual rewards per episode, that is, an individual player’s time in

possession, minus it’s operational costs. While one player (DQN 0) learns an optimal

counter-strategy against the attacker, their teammate (DQN 1) “drops out” of the

game. With agents being rewarded in training for optimal moves by teammates, the

agent’s optimal strategy would be to remain idle throughout the game, and this is

regardless of the attacker’s strategy. This is exactly the behavior we would like to

avoid, and by utilizing ShapleyQ-values, we can force cooperation between teammates

and learn more resource-efficient cooperative strategies.

In Figure 2·8b, we update Q-values using the Shapley equation as defined in

Equation 2.5. Contrary to previous runs, both teammates contribute towards the

36

task in hand regardless on whether players share observations.

Figure 2·9: Individual mean reward for time in possession per episode
during training in cooperative multiplayer FlipIt, with knowledge shar-
ing.

Some environments require explicit communication between agents in order to

achieve the best reward and learn more efficiently. We assume that players communi-

cate and share observations, that is, when a defender flips and learns more regarding

the current state of the game (e.g. opponent last known moves), this information is

also shared with its teammate and their corresponding knowledge base is updated

accordingly. With knowledge sharing, players can learn the attacker’s strategy faster

as they get a more accurate representation of the current state of the game with more

frequent flips and are no longer faced to such limited information. In Figure 2·9,

we plot the individual rewards per episode for each agent. Both defenders converge

to higher final rewards faster and more efficiently than in previous runs. Moreover,

attacker final rewards are rarely in the positive range, suggesting that the attacker

fails to gain possession of the resource.

2.4 Discussion

Cyber and real-world network security threats such as APTs often present incomplete

or imperfect state information. Hence, it is important to develop adaptive defensive

mechanisms to deal with the stealthy and persistent properties. We believe our frame-

work is well equipped to handle the noisy information in the game theoretic model

37

FlipIt and to learn efficient counter-strategies against different classes of opponents,

regardless of the number of opponents. Such strategies can be applied to optimally

schedule key changes to network security amongst many other potential applications.

Furthermore, we extend the game to larger action-spaced FlipIt, in which we introduce

a new lower-cost action that allows defenders to obtain useful feedback on the state of

the game and avoid unnecessary moves and generalize the game to multiplayer FlipIt.

Any amount of feedback, even limited, received during the game about the at-

tacker’s strategy benefits the defenders. Defenders should therefore monitor their sys-

tems frequently to gain information about the attacker’s strategy and detect potential

attacks quickly after take over. Both monitoring and fast detection help defenders

schedule moves more efficiently. This results in more control of the resource and

less budget spent on moves while increasing the defender’s benefit. We generalize

these findings to a defender opposed to multiple intruders with different attacking

strategies.

When faced with limited resources such as limited storage, memory or process-

ing powers, it is in the interest of the defenders to cooperate and develop balanced

resource-allocation strategies. We analyze a cooperative extension of the multiplayer

FlipIt security game and show the advantages of cooperative game theory. In par-

ticular, we use Shapley values to assign rewards depending on an agent’s contri-

bution towards the team’s success and force cooperation between adaptive agents.

Through continuous interaction with the environment and coordination with team-

mates, agents achieve team-optimal benefits against different classes of opponents,

learning faster and more efficient counter-strategies.

To successfully defend against the stealthy and persistent characteristics of net-

work intrusion and other security threats in online games, companies must consoli-

date their network security infrastructure and leverage ML-based techniques to en-

38

sure proactive security control at scale and leverage solution concepts from GT for

more resource-efficient defensive mechanisms. We believe that our framework is well

equipped to automatically and continuously detect network intrusion that would oth-

erwise blend in with normal activity, and to allow for rapid responses before attackers

achieve their objective in partial-observable settings. We generalize our model to deal

with multiple intrusions, and defensive mechanisms with limited resources that would

need coordination to efficiently monitor the network.

39

Chapter 3

Bad Actor Detection

3.1 Competition in Online Video Games

3.1.1 Cheating and Exploitation

Competition has always been a major element of games. It has become more relevant

in recent years with the rise of esports and the games that are at its core. This becomes

even more clear with the grown interest in Battle Royale (BR) games, where dozens

of players take part in a match simultaneously, trying to be the last one standing.

Some of the highest grossing games since 2017, when PlayerUnknown’s Battlegrounds

(PUBG) was first made available, are now designed as BRs and games of such genre

worth noting include Fortnite, Fall Guys: Ultimate Knockout, Apex Legends and

Call of Duty: Warzone. Along with competition, particularly on environments of

large popularity, there are usually those who seek to cheat, in order to get an unfair

advantage. There are a number of reasons why users would cheat in a game but

ultimately, they cheat to increase their chance of winning matches and becoming

top-tier players.

Cheaters can generally be classified into two categories; rule-breaking cheaters

and “game-breaking” cheaters. The former represents users who cheat and violate

the rules of the game, but do it to to further their own status within a game without

affecting another player’s progression while the latter is defined as the act of one player

intentionally disrupting another player’s game experience for personal pleasure and

possibly potential gain. Allowing cheating to go undisputed impacts the player base

40

negatively. Players are quick to express their discontent when in the presence of

unfair competition, and leaving cheaters unpunished quickly drives the majority of

the community away from the game.

3.1.2 Related Work

In order to maintain a fair competitive environment, companies have employed mul-

tiple different approaches to detect cheating. A common approach involves allowing

players to report users they suspect of cheating, through an in-game interface. The

game team then proceeds to review such occasions, to guarantee the validity of the

report, and take action against the cheating players if they deem necessary. Common

punishments include temporal and permanent ban of players, progress-removals and

in-game kicking. Temporary bans and suspensions are generally used when game-rule

violations cannot be fully proven while permanent ones are used on players that con-

tinuously cheat and ruin the gaming experience for other players. Progress-removal is

used in games where points are being used, and players that are found to be cheating

will get their score and account reset to the base value that new players are assigned

when they first join the game. In-game kicking is considered a milder punishment

that is usually used in less severe cases as a way to warn the player in question. Typ-

ically, anti-cheat systems decide to kick a player out of a game server as an instant

punishment for unfair game play behavior. Some games also provide the community

with the option to vote for a particular player to be kicked out of a game, and pro-

vides a way to effectively get rid of abusive players without depending on any other

anti-cheat methods. However, despite its many benefits, vote kicking may also be

used as a tool for griefing by allowing trolls to kick legitimate players out of a game.

When games are the target of common cheating methods, algorithms can also be

implemented to help identify cheating. Examples include the use of machine learning

techniques (Yeung and Lui, 2008; Galli et al., 2011) and third party anti-cheating

41

software such as Valve Anti-Cheat and Easy Anti-Cheat (Valve Software, Inc., 2002;

Epic Games, Inc., 2006). While these algorithms are effective in identifying blunt,

straight-forward cheating behaviors, more specialized techniques need to be developed

to deal with less transparent cheating approaches.

3.1.3 Contributions

The solution we describe in this chapter is based on the real-time monitoring and anal-

ysis of players’ movement and behaviour in the game, and is based on the assumption

that players engaged in cheating exhibit behaviour that is significantly distinguishable

from normal game play. Our work is aimed at helping game designers with the task of

identifying players that are griefing in their game. This type of behavior involves ana-

lyzing multiple players in a gaming environment, doesn’t involve any “super-human”

actions, and is hence harder to identify.

In particular, section 3.2 focuses on collusion in team-based multiplayer games,

while section 3.3 focuses on high skilled players playing in low level rankings, otherwise

referred to as “smurfs”. We present a novel approach to automate the detection of

both behaviors (Greige et al., 2022a; Greige et al., 2022b) and give proof-of-concept

experimental results on two real-world datasets. Our proposed technique does not

take any action on players. Instead, the purpose is to evaluate a player’s gameplay

history and behavioral pattern, and with our prior knowledge and assumption on

these cheating behaviors, we assign anomaly scores to each player indicating the

degree of cheating exhibited by the players or their corresponding teams, in team-

based settings. The game designers can then anlayze more thoroughly the group of

players our technique flags as potential cheaters, to decide whether to take action on

them or not. This would be a great improvement in their current workflow, where

they either need to manually look through every player, which is unfeasible with the

active players numbers in the millions, or only look at players that are brought to

42

their attention by the community, which would allow many players to continue to

cheat and ruin the experience of others and lead to higher churn rate.

In section 3.4, we summarize our work on behavior-based cheating detection, and

discuss the value of human intervention, even with detection automation in online

video games. We also propose improvements to our detection methods.

3.2 Collusion in Team-Based Multiplayer Games

3.2.1 Background

So far, we have mentioned various methods of cheating in online video games, most of

them in the form of software assistance including the use of an external software and

bots. One more complex form of cheating is collusion. Collusion in multiplayer games

can be described as players coordinating to purposely cooperate, to gain an unfair

advantage, in a scenario in which they are posed as adversaries. A representation

of such comes in the form of communicating with an adversary to join forces to

undermine other opponents.

Since cheating is a strong offense in the context of the game, and one that impacts

other players negatively, it is natural that game designers would take strong action

against the offenders. Strong actions in this scenario would involve preventing the

player from playing the game, either permanently or temporarily. This, in many

cases, means blocking an user from accessing an account they invested money, either

by purchasing the game or making in-game transactions, and time into. For these

reasons, it is necessary to be extremely careful about false positives, there needs to be

a guarantee that no user will be banned incorrectly. Overall, failing to catch certain

cheaters is a more desirable outcome then to ban a non-cheater.

Collusion detection has been an exciting area of research and has been greatly ana-

lyzed in different fields including card games (Mazrooei et al., 2013; Vallve-Guionnet,

43

2005), online reputation systems and auctions (Liu et al., 2008; Padhi and Mohapatra,

2011), and multiplayer single-winner games (Laasonen et al., 2012; Smed et al., 2007;

Knudsen, 2011; Laasonen and Smed, 2013). However, most approaches to detecting

collusion use supervised learning with the assumption that large datasets containing

both confirmed colluding and normal behaviors are available. In practice, such train-

ing sets are not always available, particularly in online video games. Additionally,

these models are based on a colluder’s past actions and behavior causing potential

new forms of collusion to go undetected.

There is no current way to detect colluders in online video games, other than

having game designers manually check an individual’s gameplay data. Only a handful

of colluders have been identified so far (less than 100), meaning there is no or not

enough labeled data to be used and by consequence, we cannot rely on supervised

learning.

In the next sections, we define cross-team collusion in games based on an indi-

vidual’s social relationships and gameplay data. The game platform allows users to

befriend one another, allowing them to stay up to date with their friends’ progression,

share their own progression and chat about gameplay strategies. Therefore, social re-

lationships are defined by an individual’s external connections on the game platform

and by its gameplay history, particularly, its in-game teammate and opponent rela-

tionships. Using a player’s external and in-game social relationships paired with its

in-game behavioral patterns, we select a feature set that allows us to differentiate col-

luding teams from the rest. Hence, the problem comes down to detecting anomalous

observations in our datasets. An anomaly is defined as any data point that differs

from the norm, in our case, any team behavior and interaction that differ from the

rest. Colluding has a negative impact for other, non-colluding, users in online video

games and draws bad reputation to video game companies through social media posts

44

and campaigns. Our goal is to automate the detection of colluding teams in team-

based multiplayer online game. With large amounts of data at hand, data mining

and AI techniques can help game designers tackle the problem of collusion detection

where manual analysis and detection may be impossible. We propose a system that

detects and measures the degree of collusion exhibited by all pairs of opponents, based

on their behavioral patterns as well as the game designers’ knowledge regarding col-

luding behaviors in team-based multiplayer games. Note that our system does not

take any action on the detected outliers. It only identifies a set of suspected colluding

teams that will still require further human investigation, giving game designers some

prior assumptions on who may be colluding.

3.2.2 Methodology

In what follows, we consider a set of n players and m teams, such that m < n.

We use real-valued vectors to describe individual player and team features such that

one match opposes 20 teams with at least 2 players each, and is described by the

combination of feature sets of all teams involved in that match.

Game Framework

Consider a game where teams of two players or more take part in a match simul-

taneously and compete in an open environment that is known by all players. The

goal of the game is to be the last team standing. Teams are eliminated as the game

progresses, either by other teams, or by standing outside the safe area. The safe area

is the space in the environment where normal conditions apply, standing anywhere

outside of it pressures players, as they are eliminated for standing out of the safe area

for too long. As the match progresses, the safe area is purposely reduced over time,

to force players into a more crowded space, leading to climatic moments at the end

of the game, when the safe area is small and teams are forced into conflict. The game

45

begins with teams starting at different locations. Each team chooses the location they

will start in, but their starting position is not known by the other teams. Gameplay

revolves around the teams exploring the environment. As they go through the map,

they are constantly keeping watch for other players, as learning the position of other

teams is crucial for having an advantage over them. Another important element are

items that are scattered through the map, collecting them gives the teams an edge,

making it easier to eliminate other players. It is important to note that opponents

have no way of verbally communicating through the game. Each team is assigned a

final rank placement at the end of a match. When all players in a team are elimi-

nated, their placement is equal to the number of teams remaining in the game plus

one, with any number of players in that team yet to be eliminated. In other words,

if there are n teams in a match, then the first team to be eliminated is ranked n-th,

the second team to be eliminated is ranked (n− 1)-th and so on. Match events logs

are captured during gameplay and stored at the end for processing. Events provide

information regarding the game state, such as players locations and actions taken

throughout the match, as well as information regarding the teams (e.g. teammates,

team rank placement, etc).

Data Collection

Our analysis is based on data from team-based tournament modes of an online team-

based multiplayer game, including cases of colluders confirmed by the game designers.

We use data from 113,060 unique matches and 173,603 unique players that have played

over 3 matches over the span of 3 days. We strengthen our findings by using data from

44,097 unique matches and 128,342 unique players that have played over 3 matches

over the span of 2 days, at a different time range, that includes a handful of confirmed

cases of colluders. Player data is collected in accordance with applicable privacy

policies and collected based on players’ privacy settings and preferences. In what

46

follows, when we refer to the game or the environment, we imply that all previously

mentioned conditions apply.

Feature Selection

We construct individual players’ feature sets from their in-game attributes, as de-

scribed in the game logs. We focus on attributes such as match experience (e.g.

number of matches a player has participated in, final team rank placement) and play

style (e.g. player’s starting position in each match played). The choice of features used

in our technique comes from a combination of the game designers’ expert knowledge

on player behaviors and what differs colluding players from non-colluding ones, but

also exploration and experimentation with the feature set. Initial investigations into

colluding behaviors were initiated by instances of user complaints and social media

posts. As an example, video evidences showed a set of players from opposing teams

deliberately choosing not to fight each other despite their close proximity, teaming

up against other teams to ensure first and second place victories in ranked matches.

Hence, when constructing the team feature set, we look at pairwise attributes such

as the number of matches both teams participated in, their landing proximity to one

another and their final team rank difference at the end of each match played. Using

individual player and team features, we selected the following feature set to infer

information differentiating colluding teams from the rest: landing proximity, final

team rank placement, acquaintance, number of matches and number of consecutive

matches.

47

Dataset 1 Dataset 2

Teammates Opponents Teammates Opponents

Number of Pairs 171,794 347,890 95,893 65,744

Acquaintances 469 143

Average # of matches played 14.4 4.6 9.2 4.5

Maximum # of matches played 217 35 95 38

Average distance 1,886.35 31,433.17 2,115.45 31,694.38

Average rank difference N/A 5.19 N/A 5.36

Appeared in 3+ consecutive matches 44,229 22,472 23,056 4,196

Table 3.1: Gameplay statistics for Dataset 1 and Dataset 2.

Initial statistics are reported in Table [3.1] for both datasets. As a reminder,

both datasets include data from pairs of players that have played over 3 games in

the span of 3 days for Dataset 1 and 2 days for Dataset 2. The probability that

two teammates appear in the same set of matches is naturally higher than that of

two opponents, which explains the significantly higher number of pairs of teammates

in both datasets. Moreover, it is highly unlikely to find a pair of players that not

only has played over 3 games as teammates but also appeared in at least 3 or more

matches as opponents, more so over such a short period of time. However, we find

469 pairs in Dataset 1 and 143 in Dataset 2 such pairs and include these values in

the table under acquaintances. As stated in the previous section, we are interested in

players’ proximity to one another, hence we look at the average distance between each

pair of players’ starting positions. Values are coherent over both datasets where the

average distances between all pairs of teammates are 1,883 for Dataset 1 and 2,125

game units for Dataset 2, and the average distances between all pairs of opponents

are 31,928 for Dataset 1 and 31,112 game units for Dataset 2. Similarly, the average

rank difference between two pairs of opponents is also coherent over both datasets

with a 5.27 average for Dataset 1 and a 5.28 average for Dataset 2.

48

(a) Player distance distribution over all matches played for each pair of teammates
and opponents from Dataset 1 and 2. For Dataset 2, we also add the distance distri-
bution for pairs of confirmed colluders.

(b) Average distance between each pair of opponents from Dataset 1 and 2, averaged
over the set of matches both opponents participated in. Each dot represents a pair
of opponents.

Figure 3·1: Teammate and opponent distance distribution and dis-
tances between opponents.

• Proximity. For each pair of teammates and opponents, we calculate the av-

erage distance between players’ initial positions in the game environment over all

matches both players participated in. We plot the distribution of the average dis-

tances for all pairs of teammates and for all pairs of opponents from Dataset 1 and 2

in Figure 3·1a. We observe that the majority of teammates were in close proximity at

49

the start of each match, with some exceptions nearing an average distance of 10,000

game units. In contrast, the average distance between two opponents varies greatly,

ranging from near 0 to over 70,000 game units. In Figure 3·1b, we plot the difference

between each pair of opponents’ starting positions averaged over all matches both

players participated in. With over 10 match appearances, certain pairs of opponents

were as close as teammates would be.

Colluding teams have an incentive to remain close to one another, which begins by

pre-planning map location starting points. Two opponents being in close proximity at

the start of a game does not necessarily indicate collusion, but the together with the

other features, especially when analysing a pair’s proximity averaged over multiple

matches, is an important indicator.

Figure 3·2: Average rank difference for each pair of opponents from
Dataset 1 and 2. For Dataset 2, we highlight the pairs of confirmed
colluders in blue.

• Rank Placement. There are a number of reasons why users would collude in

games but ultimately, they collude to increase their chance of winning matches and

become top-tier players, joining the highest ranks. These players have an incentive

to collaborate with other top-tier players in order to aid each other in keeping their

50

respective status and tier ranks. For this reason, we believe that colluding teams

are more likely to be closely ranked at the end of each match. For each pair of

opponents, we look at their team rank placement difference over all matches both

players participated in as opponents. In Figure 3·2, we plot these values for each pair

of opponents. We also highlight the confirmed cases of colluders from Dataset 2 in

blue.

Suppose two random teams finish one rank apart in a single match that involved

20 different teams. Then the probability of this event occurring is equal to (2 · 19 ·

18!)/20! = 0.1. Therefore, the probability that two teams finish one rank apart k

times in n matches would be equal to the following:(
n

k

)
(0.1)k(0.9)(n−k) (3.1)

Now suppose two random teams finish one rank apart in a single match but also rank

in the top 10 spots out of 20 spots. The probability of this event occurring is equal

to (2 · 9 · 18!)/20! = 0.047. Therefore, the probability that the same two teams finish

in the top 10 spots and finishing one rank apart in n different matches is equal to the

following:

(
n

k

)
(0.047)k(0.953)(n−k) (3.2)

To give a better idea, suppose both teams finished in the top 10 spots and one

rank apart in 3 matches out of 5. Then the probability of this event occurring is equal

to 0.00094. Despite the very low probability of this event occurring, we find 6,771

pairs of opponents in Dataset 1 and 26,370 pairs of opponents in Dataset 2 ranked in

the top 10 out of 20 teams, with an average rank difference less than or equal to 2 out

51

of over 110,000 and 290,000 unique pairs of opponents respectively. Note that these

values represent pairs of opponents on different teams and not individual teams.

• Acquaintance. To coordinate a collusion in a game, we believe that players

involved are acquaintances. For this reason, we look at a player’s social relationships.

Social relationships are defined by the connection between two individuals on the

game platform which allows users to befriend one another, and by their gameplay

history, particularly, their in-game teammate and opponent relationships.

We find 469 pairs of players that have played both as teammates and as opponents

in at least 3 games in Dataset 1 and 143 pairs in Dataset 2. There is no sure way

to face a predetermined opponent in the game and players are matched at random

with players of similar skill levels. Therefore, it is generally highly unlikely for two

players to end up as opponents in multiple matches unless some collusion such as

communicating outside the game to coordinate playing at the same time and on the

same game server, occurred prior to the matches, increasing their chance of being

assigned to the same set of matches.

• Number of Matches and Consecutive Ones. Finally, we look at the num-

ber of matches and consecutive matches each pair of opponents has participated in.

We assume that colluding teams are more likely to have participated in multiple

matches with the same teammates and/or opponents. The higher the number of

matches two players appeared in, the more likely it is that these players agreed on

playing the same set of matches. We are also more interested in players that con-

stantly collude, ruining the user experience for other players. We are not so much

concerned about short-term and temporary colluders, as they only temporarily dis-

rupt the experience for the rest of the players. Therefore, in what follows, we only

consider pairs of players that have participated in at least 5 matches together for

Dataset 1 and in at least 3 matches for Dataset 2. Finally, we also look at the num-

52

ber of consecutive matches two opposing teams participated in as a higher number

of consecutive matches gives more insight on whether appearing in the same set of

matches was premeditated.

Acquaintance Rank Difference Max # Consec Games Proximity # Matches Anomaly Score

D
a
ta
se
t
2 A TRUE 1.18 2 1971.32 11 -0.173

B TRUE 1.11 2 984.15 9 -0.166

C TRUE 1.45 2 6573.93 11 -0.162

D TRUE 3.44 2 18137.61 18 -0.156

E TRUE 3.44 2 18389.09 18 -0.156

Table 3.2: Gameplay data for 5 confirmed pairs of colluders from
Dataset 2.

Each individual feature is naturally not enough to determine whether two or more

teams have been colluding. As an example, we report the gameplay data for 5 pairs

of opponents confirmed to be colluding by the game designers in Table 3.2; column

Acquaintance is set to true if the pair had previously played as teammates at least

once, column Rank Difference reports the average difference in rank placements

when playing as opponents, column Max # Consec Games is the maximum number of

consecutive games the pair of players appeared in as opponents, column Proximity is

the average distance in game units, between players’ initial landing positions (with the

map area being roughly 1010 units2 and character movement speed 350 units/second)

and column Number of Matches is the total number of matches the pair played as

opponents. Column Anomaly Score is the score given to the pair by our technique,

such that the lower the score is, the more abnormal the pair’s behavior is. Pairs D and

E, although relatively close in terms of average final team rank placement and landing

proxmity, they do not exhibit the same behavioral pattern as the 3 other pairs. They

do however appear as opponents in the same set of matches more frequently than the

first 3 pairs. This is why it is important to consider a combination of the different

features to better differentiate colluding behaviors from the norm.

53

Social Network Analysis

In the following sections, we study the relationship between teammates and opponents

using social network analysis and explore the efficiency of our model on real datasets

while showing its performance on confirmed cases of collusion.

So far, we have analyzed the behavior of pairs of teammates and pairs of opponents

with a focus on their gameplay history. We also aim to understand the connections

between players from different teams in different matches. Social network analysis

(SNA) is one tool that could potentially enhance our understanding of the relations

that develop between different teams throughout the matches played, and that could

indicate collusive behaviors. SNA uses concepts from graph theory to calculate met-

rics representing the nodes, the connections or the network itself such as the distance

to other individuals in the network or the number of interactions with other indi-

viduals. These metrics are important in quantifying interactions between players or

teams of players as well as identifying potential clusters in the network. Moreover,

network analysis provides a visual model for analyzing and evaluating teammate and

opponent relationships.

For clarity purposes, we only plot edges between players that have appeared in

over 3 matches together. Each node in the social network represents an individual

player and the larger the node size, the more matches that user has played. Team-

mate relationships are represented by blue edges while opponent relationships are

represented by edges of colors ranging from yellow to maroon such that the darker

the color of the edge is, the closer the two players are in terms of rank placements

averaged over all matches appeared in together. The darker the opacity of an edge

is, the higher the number of games the two users have appeared in. Similarly, the

thicker the edge is, the higher the number of consecutive games the two users have

appeared in.

54

(a) Detected colluders in Dataset 1 (b) Confirmed colluders from Dataset 2

Figure 3·3: Social network illustrations of a set of players from both
datasets. Suspected and confirmed colluders are in red.

A number of clusters get formed and two examples are shown in Figure 3·3. Figure

3·3a illustrates an example of a set of suspicious players as defined in the previous

section, while Figure 3·3b illustrates an example of a set of confirmed colluders, all

represented by red nodes. As stated earlier, the thicker and the darker the edge,

the more significant the interaction was between both players. The set of players

represented in Figure 3·3 are strongly connected in the social networks, either in terms

of close team rank placements (red colored edges) or in terms of game appearance

(darker opacity). Each pair of suspected or confirmed colluders has either played as

teammates, as opponents or as both, suggesting pre-established acquaintance. The

only main difference between both sets of players is that the set of confirmed colluders

from Dataset 2 appeared more frequently as teammates as opposed to the suspected

colluders. We obtain a number of different clusters that are not shown in this thesis,

that exhibit similar behavior.

55

3.2.3 Experimental Results

Automating Detection

Isolation Forest (Liu et al., 2008; Pedregosa et al., 2011) is an unsupervised learning

algorithm used to detect outliers and to identify anomalies instead of normal obser-

vations, that is to identify rare events that deviate from the norm. Isolation Forests

(IF) are tree-based algorithms built around the theory of decision trees and random

forests. IF separates the data into two parts by randomly selecting a feature from

the given feature set and then randomly selecting a split value between the minimum

and maximum values of the selected feature. The random and recursive partition of

data is represented as a tree such that the end of the tree is reached once each data

point is isolated. Outliers need fewer random partitions to be isolated from the rest

of the dataset, therefore the outliers will be the data points which have a shorter

average path length from the root node on the isolation tree. In what follows, we

choose 100 estimators with 1000 samples where each base estimator is trained on the

features mentioned in the previous section. We do not have an accurate estimation

of the number of actual colluders present in our dataset, but, for comparison, game

designers have a rough estimate that, in the game, there are 500 unique colluders

every month with roughly 2000 user reports of others being suspicious of collusion

behavior and Dataset 1 covers a span of 3 days, while Dataset 2 covers a span of 2

days. Given a dataset of players and matches, combined with individual player and

team features, each pair of opponents is assigned an anomaly a score indicating the

degree of collusion exhibited by the pair’s respective teams.

56

Dataset 1 Dataset 2

(a) Visual representation of each data point in both datasets.

(b) Visual representation of flagged outlier in both datasets.

(c) Zoom in view of the bottom left corner clusters.

Figure 3·4: Visual representation of opponent rank differences with
regards to their average proximity to one another.

In Figure 3·4a, we plot visual representation of each pair of opponent’s rank differ-

57

ence with regards to their average proximity to one another. Each node represents a

pair of opponents in the dataset and each pair of opponents is given an anomaly score

which indicates the degree of collusion exhibited such that negative scores represent

outliers and the lower the score; the darker the node color in the scatter plots, the

more abnormal the pair of opponents exhibit.

In Figure 3·4b, we only plot the flagged outliers such that the bigger the size

of the node, the more games both opponents appeared in. In the bottom figures,

we show a zoomed in version of the scatter plots for the cluster of outliers in the

bottom left corner, i.e. pairs of opponents with a lower average rank placement

difference and closer proximity. In both datasets, the pairs of opponents that exhibit

the highest degree of collusion are clustered in the bottom left corner of the plots

as shown in Figure 3·4c, where both the rank difference and proximity are low. We

confirm that all suspected colluders mentioned in previous sections as well as the

confirmed colluders from Dataset 2 were all identified by the isolation forest and

a more detailed look into their behavior is reported in the next subsection. While

some pairs of opponents are flagged as outliers, they are not necessarily colluders. In

Dataset 2, the isolation forest identifies the pairs with a rank difference higher than

14 as outliers (cf. Figure 3·4b; Dataset 2), and while that is true, they do not exhibit

any of the features mentioned earlier a part from being somewhat in close proximity.

The biggest feature that differentiates these pairs from the rest is the high average

rank difference, which is most likely why they have been identified as outliers. As

mentioned in section 3.2.2, it is important to note that the algorithm does not take

any action on the detected outliers, as it simply flags potential colluders. Scores are

provided to the corresponding game team and designers to facilitate the detection of

collusion and further investigation would be required by human experts before taking

any action against these players.

58

Evaluation

Collusion is still a relatively recent behavior emerging in team-based multiplayer

games and with the lack of a training set, we can manually verify each outlier flagged

through our existing knowledge on colluding behaviors. Prior knowledge characterizes

colluding behaviors similar to ones of teammates, i.e. indication of prior established

connection by either having played as teammates before or by appearing in the same

set of matches as opponents, close proximity to one another and close in terms of

final rank placements. Each pair of opponents is assigned an anomaly score which

indicates the degree of collusion exhibited by the pair of players, such that negative

scores represent outliers. The lower the score, the more abnormal the behavior.

Out of the 288 outliers detected in Dataset 1, 42 were acquaintances. In particular,

out of the 20 pairs of opponents with the lowest anomaly scores, 15 of them had

previously played as teammates. Moreover, out of the 78 pairs of opponents flagged

as outliers that also played over 10 matches, 42.3% of them averaged a rank difference

of less than 3 ranks. Looking specifically at all four features mentioned in this section,

out of the 288 outliers, 72 pairs of players played over 6 games as opponents, had an

average proximity of less than 8000 units, and a rank difference of less than 3 over

all games played. 65 of those pairs also appear in the top half of outliers with the

lowest anomaly scores. Similarly, out of the 56 outliers detected in Dataset 2, 13 were

acquaintances such that 9 of those pairs appear in the top 20 pairs of opponents with

the lowest anomaly scores. Although the outliers detected in this dataset did not show

as close as an average proximity as the outliers in Dataset 2 (average proximity of all

56 pairs of opponents was 10,000 game units), they did show a stronger indication

of prior communication, with 16 pairs of opponents appearing in the same 3 or more

consecutive games and 24 of them appearing in over 10 matches as opponents. Finally,

42 out of the 56 outliers were less than 3 rank placements apart, averaged over all

59

matches played.

Acquaintance Rank Difference Max # Consec Games Proximity # Matches Anomaly Score Colluders

D
a
ta
se
t
1 A TRUE 1.18 2 1971.32 11 -0.173 TRUE

B TRUE 1.11 2 984.15 9 -0.166 TRUE

C TRUE 1.45 2 6573.93 11 -0.162 TRUE

D TRUE 3.44 2 18137.61 18 -0.156 FALSE

E TRUE 3.44 2 18389.09 18 -0.156 FALSE

D
a
ta
se
t
2 A TRUE 1.78 3 12982.80 32 -0.184 TRUE

B TRUE 1.88 3 15201.66 25 -0.157 TRUE

C TRUE 1.875 3 15910.2 24 -0.154 TRUE

D TRUE 1.56 2 6825.69 9 -0.149 TRUE

E TRUE 1.2 2 6072.28 5 -0.13 TRUE

Table 3.3: Top 5 outliers with the lowest anomaly scores detected in
both datasets studied.

We report the gameplay data for the top 5 pairs of opponents exhibiting the

highest degree of collusion in both datasets in Table 3.3 (i.e. pairs with the lowest

anomaly scores). Column Colluders is set to true if the pair of suspected colluders

were confirmed to be in fact colluders by the game designers, false otherwise. This

is done by manually checking players’ gameplay data for each game play during the

corresponding date range. We give a more in-depth description of each pair’s behavior

in what follows.

We confirm with the game designers that 14 out of the 20 most abnormal pairs

from Dataset 1 were most likely to be colluding, and 16 out of the first 20 most

abnormal pairs from Dataset 2 were all confirmed colluders. According to the game

designers, the biggest factors in deciding whether two teams are in fact colluding

are the number of consecutive matches and repeated close final rank placements.

The probability for this to occur is very low to be a coincidence over a number of

consecutive matches or a high number of matches in such a given short time frame.

That said, pairs D and E from Dataset 1, although exhibiting a suspicious behavior

by appearing in multiple consecutive matches on a more extended date range, could

not be confirmed to be colluders due to their disparate placings throughout the game.

When collusion is clearly occurring, game designers spend approximately 3 min-

60

utes manually checking opposing team’s gameplay data. In less obvious cases, game

designers need to search through more matches (as was the case with pairs D and E

from the previous example), which can significantly increase the time required to de-

tect colluding teams. By isolating the outliers in our dataset, we help game designers

reduce the pool of players needed to be manually investigated, focalizing only on the

players exhibiting the highest degree of collusion in our dataset.

3.3 Smurfs in Competitive Multiplayer Games

3.3.1 Background

In this section, we focus on high-skilled players in low-level rankings, otherwise known

as “smurfs”. The term smurf is used to, among other things, identify skilled players

that create new accounts to purposely play in a skill bracket that is below their

actual level and be matched against novice players to gain a competitive advantage.

Matchmaking in online video games prioritizes assigning novice players with low level

accounts in the same match. The premise is that the longer you play the game,

the more skilled you get and the more levels you gain on your account. However,

players have access to the exact same resources during a match, regardless of their

account levels. In games where account creation is free, players can easily create new

accounts to get matched with lesser skilled players. This affects the gaming experience

for novice players, who have to fight in a scenario where they are at an important

skill disadvantage. Aggregated metrics show that the number of player reports that

indicate smurfing has increased significantly in recent months, becoming one of the

most common disruptive behaviors encountered in online video games. The issue of

high-skilled players at low levels has been acknowledged in many popular First-Person

Shooter (FPS) and Battle Royale (BR) games such as Fortnite, Apex Legends, League

of Legends and Dota 2 to name a few.

61

There are multiple reasons why players would want to smurf and play against

lower-skilled players, the most common one being that playing against lower-skilled

players generally means easy wins in competitions. For example, some players smurf

to boost one’s confidence while others do it for practice as it could be a good source

of training; more specifically, they create a new account to gain experience and im-

prove their skill set by learning new strategies, without taking the risk of affecting

their gameplay statistics and win streaks on their main account. We also find what

are considered “ethical smurfs”, players that smurf for educational purposes or video

content creation. These smurfs typically set themselves a challenge to achieve, such

as level up tiers in a record time or reach high ranks using only bad weapons. And

while these smurfs are less disruptive in different ways, they still put novice players

at a skill disadvantage and have an important impact on player’s gaming experience.

That said, in this section, we mainly focus on detecting smurfs that abuse the sys-

tem by constantly creating new accounts to farm lower levels, and disrupt the game

environment and gaming experience.

Whether smurfing is considered a bannable offense is up to the discretion of the

game designers. With that said, it has become one of the biggest problems in modern

gaming across all genres and it is up to video game developers to find methods of

detecting and dealing with smurfs. In order to maintain a fair competitive environ-

ment, many video gaming companies have decided to take action against players who

are found to be smurfing in their games. Fortnite announced they would immediately

ban players that are caught smurfing while in Dota 2, for example, players suspected

of smurfing are set against each other until the algorithm either bans them or veri-

fies their authenticity. The former however resulted in many innocent players to get

banned from the game due to bugs in the game’s anti-cheat software. For the most

part, the detection of smurfs remains a manual task and while it is hard to completely

62

eliminate smurfing from occurring in games where account creation is free, it can be

detected and appropriate actions can be taken against the players involved.

We propose a novel approach to detect high skilled players in low level matches in

competitive multiplayer games based on players’ in-game behavioral patterns. Our

model is trained to identify average player performance at early account life/levels and

detect anomalies in that dataset, defined as players with discrepant high performance

in their early stages of the game. Hence, it is necessary to select a set of features

that form a good representation of player in-game performance (such as the average

number of kills per game, average rank placement in matches, competitive MMR,

number of shots hit versus the number of shots fired, etc), and analyze at which level

approximately do we observe a clear improvement in a player’s skill level. Our goal is

to provide game designers insight on early player behavior patterns, in particular, on

high skilled low level player behaviors and how they differ from the norm. By detecting

smurfs in the early stages of competitive multiplayer games, we can improve beginner

players’ user experience, which could lead to longer player retention. It is important

to note that our system does not take any action on the players and our aim is

primarily to improve game designers workflow in detecting smurfs. When automating

the detection of smurfs, it is important and necessary to be extremely careful with

False Positives (FP) as falsely accusing an innocent player can impact players, and

the relationship between the developer company and the player community.

In the following section, we describe the game environment as well as the dataset

used in our experiments, followed by an in-depth description of the feature set selected

to identify high skilled players in low level rankings. We also mention additional

features that were analyzed, but not used in our detection system. In section 3.3.3,

we first present initial results on manually selected outliers and generalize our findings

after automating the detection. We also improve the automation with additional

63

features to differentiate smurfing behaviors from ones that leverage external software

and show the efficiency of our approach on a real-world dataset that includes over

18,000 unique players.

3.3.2 Methodology

Game Environment

Consider an FPS-type game consisting of 20 players competing against one another

in a match. Players experience the game actions through the eyes of a character that

is chosen before the match begins, and navigate through an open environment that

is known by all players. A player’s objective is to defeat all opponents in a match

while avoiding being hit, all while remaining the last person standing at the end of the

match. Each player is assigned a final rank placement corresponding to the number of

players remaining in the game after being eliminated, plus one, similar to BR games.

When a player first registers and creates an account on a game, we assume the

player is a novice one and they are assigned the lowest of skill levels to be matched

against other beginner players with similar skill level. A player levels up by accumu-

lating experience points (XP) in matches. There are many ways to gain XPs, and

this includes accumulating kill assists, kills, placing in the top ranks in the leader

board or by winning matches among other things. After reaching a certain number of

XPs, the player advances to the next skill level and is matched against players with

a similar skill set, and so on.

Data Collection

Our analysis is based on gameplay data from a multiplayer online first-person shooter

video game. We use data from 18,264 unique new players and collect their gameplay

data over the span of two consecutive weeks after their registration date. Player

data is collected in accordance with applicable privacy policies and collected based

64

on players’ privacy settings and preferences.

Detecting smurfs in online video games remains a relatively recent problem, with

little to no research on players’ behavioral patterns. As a consequence, we do not

have access to test datasets. In what follows, we use preconceived knowledge from

human experts and explore and experiment with player’s gameplay data to infer

information on player behavior and on what differentiates a smurf from the rest of

the population. We combine these findings with tools from unsupervised learning to

automate the detection of smurfs in our dataset. Our goal is to determine whether a

high-skilled player in a low level ranking is in fact a smurf and separate them from

novice ones.

To do so, we base our analysis on a number of different features that we describe in

the following section. In what follows, when we refer to the game or the environment,

we imply that all previously mentioned conditions apply.

Feature Selection

There are a certain number of features we are interested in looking into as they give

us more insight on a player’s skill level. In particular, we look at their average number

of kills per match, the average number of matches it takes them to reach the required

number of XPs to level up, their average rank placement over the matches played and

finally, their shot accuracy.

• Number of Kills. Beginner players have little to no skills when playing a

game for the first time and eventually become more experienced as they play more

matches and get more familiar with the game environment. By analyzing the general

trend of beginner players, a novice player averages about 1 kill per match in the first

hundreds of games. Hence, any player with over 1 kill per match can be considered a

higher skilled player, which gives us important insight on the player’s skill set.

65

• Matches to Level Up. We also look at the number of matches it takes a

player to achieve a required criteria to level up. As a reminder, a player starts off

at the lowest possible level and progressively advances to higher levels as they gain

more experience points.

• Rank Placement. Another important feature we look at is a player’s final

rank placement. We expect a novice player to gradually improve its skill set, and

hence gradually rank higher in the leader board. Suppose we have 20 players in a

match. The probability for a random player to repeatedly rank in the top 5 positions

out of 20, n times, is equal to 0.25n. As n increases, the probability of this event

occurring decreases significantly. If we consider that all players in our dataset have

the same skill level, then a player has 1 out of 0.2520 chance of consecutively finishing

in the top 5 rank placements in its first 20 matches. When looking at the average rank

placement, we are interested in analyzing players that average a low rank placement

as this could be an important indication on their higher skill set.

• Shot Accuracy (shots hit). Finally, we look at a player’s shot accuracy.

In general, the goal in FPS and battle-royale games is for a player to eliminate all

its enemies by defeating them using weapons and other tools found in the game

environment. A novice player is more likely to start with an average to low shot

accuracy, improving gradually as they gain more experience by playing more games.

Players with an almost perfect shot accuracy are either very skilled players opposed to

much lower-skilled ones (slower reflexes, movements during the game etc), or cheaters

using external tools such as aimbots to improve their shooting accuracy. Hence, we

use a player’s shot accuracy, which is equal to the number of shots that hit opposing

players over all shots fired during a game, averaged over all games played, to separate

the higher skilled players and cheaters from the novice ones.

66

Unused Features

We analyzed additional features that weren’t as insightful as the previous ones and

are not currently being used in our detection system, but are still worth mentioning

to help researchers with future work on high skilled player detection in competitive

multiplayer games.

• Item Categories. Items are scattered through the game environment and are

available for players to collect and use. The purpose of these items is to aid players

in eliminating opponents in the match. This includes and is not limited to weapons,

shields and survival equipment such as healing items and more. After analyzing

suspected smurf behaviors, we notice that on average these players collect more am-

munition and health-related items than the average player, whereas the novice players

pick up more weapons. This can be explained by the fact that advanced players are

more likely to be involved in direct conflicts eliminating opposing players and hence

spend more ammunition, increasing their chance of getting injured and their interest

in collecting health-related items.

• Characters Used. Another important element in FPS games are characters.

Players have the freedom to choose from a wide range of characters, all with unique

set of skills and abilities. We notice that novice players are more likely to switch

characters throughout their matches, whereas higher skilled players are more likely

to stick to one or two particular ones, which could be due to habit, experience or

personal preferences.

• Shot Accuracy (fatal shots, head shots). Finally, when we analyzed a

player’s shot accuracy, we looked at the number of shots hit (i.e. number of shots

that hit an opponent), the number of fatal shots, and the number of head shots.

As fatal shots and head shots are more rare and harder to achieve, we did not have

67

enough information to set a threshold that differentiates a higher skilled player from

a novice one.

3.3.3 Experimental Results

(a) Players’ average number of kills per
match over the total number of matches
played. Players with a high average
number of kills are highlighted in pur-
ple.

(b) Players’ average shot accuracy over
total number of matches played. Players
highlighted in Figure 3·5a are also high-
lighted in this figure for analysis pur-
poses.

Figure 3·5: Initial analysis of gameplay dataset.

Based on the feature set described earlier, we plot initial results to help with our

analysis. In Figure 3·5, we plot some of these features to compare a novice player’s

skill set level to higher-skilled ones. In particular, we plot players’ average number

of kills per match for each individual player in Figure 3·5a and players’ average shot

accuracy over all matches played in Figure 3·5b. We highlight a couple of manually

detected outliers in both plots in purple, that is, players that have played less than

100 games with a high average number of kills and high average shot accuracy per

match.

68

#M to Level Up Average Kills Rank Placement Shot Accuracy

GP 88.02 1.66 8.61 0.29

MO 12.88 8.87 4.5 0.42

A 19 5.45 9.1 0.34

B 13 10.25 3.45 0.64

C 14 8.1 7.3 0.33

D 16 5.65 7.05 0.46

Table 3.4: Gameplay data for 4 confirmed smurf accounts over the
first 20 matches played after registration.

In Table 3.4, we report the average number of matches needed to level up for

the general population (GP), the manually detected outliers (MO) and 4 confirmed

smurf accounts (A–D) obtained from the game designers. We analyze the smurfs’ in-

game behavioral patterns as well as their match progression as opposed to the general

trend. We focus on the four features mentioned in the previous section, that is, the

average number of matches needed to level up, the average number of kills per match

and their average rank placement and average shot accuracy over the first 20 matches

played. Generally, a player averages less than 2 kills per match, as opposed to an

average of 7 kills per match for the smurfs. Smurf players also rank higher overall

than the general population and have a more precise shot accuracy throughout the

first couple of games.

69

(a) Kill progression for 4 confirmed
smurf accounts.

(b) Kill progression for each previously
highlighted outlier.

Figure 3·6: Cumulative kill progression of higher-skilled players as op-
posed to the general population (in navy blue) over the first 20 matches
played.

We plot the cumulative number of kills over the first 20 matches for each high-

lighted outlier in Figure 3·6b and for each confirmed smurf account in 3·6a. For

comparison, we also include the general trend of cumulative kills over the first 20

matches for the rest of the players in navy blue, emphasizing the difference in skill

levels between smurf players and regular novice players. As a reminder, all players in

our dataset are selected from the pool of beginner players.

The outliers highlighted in Figures 3·5a and 3·5b clearly show a faster progression

in terms of cumulative kills in the first 20 matches played (cf. Figure 3·6b), reaching

over 150 kills after 20 games as opposed to approximately 40 for the general popula-

tion. From Table 3.4, these outliers level up much faster than the general population,

most of them leveling up in less than 13 matches as opposed to approximately 88

matches for a normal player. Similarly, confirmed smurfs level up much faster than

the general population and follow the same trend as the manually detected outliers,

leveling up in 19 or less matches.

70

Automating Detection

Unsupervised anomaly detection methods have been commonly used in problems with

unlabeled datasets to prevent fraud, adversary attacks and intrusions. It assumes

that the majority of data points in the unlabeled dataset are “normal” and identifies

observations that don’t fit to general patterns considered as normal behaviors; that

is, it identifies rare events that differ significantly from normal behaviors. Given the

fact that we are looking at a dataset composed of what should only be novice players

with little to no skills, we define an outlier as a highly-skilled player significantly

exceeding beginner player capabilities. Using our preconceived knowledge on smurf

behaviors, combined with the feature set described in the previous section, we use

Isolation Forests to detect outliers in our dataset and separate high-skilled players

from lower-skilled ones in low rankings.

It is hard to estimate the number of smurfs in our dataset as we have no accurate

estimation on the number of new smurfs per month. We can calculate the number of

accounts that share one device or use the same IP address, but there is no accurate way

to estimate how many of those accounts are actually smurfs as opposed to accounts

belonging to one family, or one college campus for example. Out of 18,264 players in

our dataset, we assume that 0.01% of them are outliers and possible smurfs, that is,

182 outliers.

71

Figure 3·7: Scatter plot representing the anomaly scores assigned to
each data point in the gameplay dataset.

In Figures 3·7 and 3·8, we plot data points from our gameplay dataset, such

that each data point represents a player’s number of matches needed to reach the

next game level with regards to the player’s number of kills per match, averaged

over the first 20 matches played. Each player is assigned an anomaly score by the

isolation forest indicating the degree of skill difference exhibited by the player; positive

scores (lighter colors) represent normal observations and negative ones (darker colors)

represent outliers such that the lower the score, the more abnormal the behavior. In

Figure 3·7, we notice that the players that differ most from the standard behavior

are the ones in the bottom right corner of the graph, where the number of matches

needed to level up tends to be less than 20 matches and the average number of kills

per match over the first 20 matches played is at least 7 kills.

72

Figure 3·8: Scatter plot representing the anomaly scores assigned to
each flagged outliers.

In Figure 3·8, we only plot the outliers detected by the isolation forest, such that

the bigger the node size, the higher the player ranked in the first 20 matches played.

While it is true that players that need over 60 matches to level up have been flagged

as outliers, they are not necessarily smurfs. Since anomaly detection algorithms

detect any observation that differs significantly from standard behaviors, our system

detects extremely low-skilled players and classifies them as outliers, in particular,

players with an abnormally high number of matches played to level up. That said,

out of all outliers, the ones assigned the lowest scores and therefore exhibiting the

most abnormal players are nevertheless the ones with a significantly higher number

of average kills per match, higher shot accuracy and higher rank placement. Further

investigation and human intervention is still required to confirm gameplay legitimacy,

and we discuss this in following section. Finally, we confirm that the 4 confirmed smurf

accounts mentioned earlier were all identified by the isolation forest.

73

We also remind the reader that no action against any flagged player is taken by

our system. Our algorithm solely identifies suspicious players that exhibit typical

smurf behaviors and findings are provided to the corresponding game team.

#M to Level Up Average Kills Rank Placement Shot Accuracy Duration of Play Bans/Associations Cheat Reports System Label GD Label

A 13 8 2.61 0.78 0 days 01:59:00 0/0 7 cheater cheater

B 16 7.9 3.4 0.75 0 days 23:39:00 4/6 58 cheater cheater

C 7 11.2 6.6 0.33 49 days 02:39:00 0/0 17 smurf unknown

D 12 8.1 2.7 0.52 240 days 15:38:00 0/5 20 smurf smurf

E 18 7.2 7 0.74 0 days 23:36:00 4/6 14 smurf cheater

F 14 8.1 1.2 0.32 103 days 04:48:00 0/0 256 smurf cheater

G 11 8.9 3.8 0.33 0 days 02:25:00 0/0 0 smurf unknown

H 11 8.8 3.1 0.37 28 days 03:43:00 0/8 3 smurf smurf

I 10 7.9 2.1 0.33 283 days 07:18:00 0/3 51 smurf smurf

J 21 5.9 4.7 0.77 3 days 22:57:00 0/2 1 smurf smurf

Table 3.5: Top 10 outliers detected with the lowest anomaly scores,
i.e. the most abnormal behavior compared to the rest of the dataset.

Cheaters vs. Smurfs

It is important to note that while most outliers detected by our system show higher

skilled behaviors compared to the rest of the population, they might not necessarily

smurfs. In fact, some higher-skilled players might be cheaters using external software

to boost their performance and gain an advantage beyond what normal gameplay

would allow. For this reason, it is important for our system to classify the flagged out-

liers into legitimate and fraudulent gameplay behaviors, allowing smurfs and cheaters

to be dealt with accordingly.

We look at 3 additional features that give us more insight on a player’s performance

and gameplay history, that is, the number of associated accounts, the duration of play

and the number of previous bans and cheat reports.

• Associated Accounts. We first look at the number of associated accounts to

the suspected player’s account. A smurf typically creates multiple fake and secondary

accounts to play against lower-skilled players, for fun, for easy wins in competitions, or

for personal challenges among other things. Other smurfs create secondary accounts

to improve their skills and tactics without risking the statistics and rankings of their

74

own account. Therefore, the number of associated accounts is a good indication on a

player’s intention in a match.

• Duration of Play. Additionally, smurfs often create these secondary accounts

to achieve a particular goal, such as getting the highest possible number of kills in a

certain number of matches or leveling up in the least amount of matches. Because they

are matched against beginner, lower-skilled players, these goals are usually achieved

in a number of hours or days. Once the set goal has been achieved, smurfs abandon

the account and potentially create another one to achieve the same or a different

goal. Cheaters on the other hand use external software to boost their performance in

a match and hence invest more time and effort into their account in the long-run. For

this reason, we are interested in the duration of play spent on the flagged account to

get a better understanding on the player’s intention.

• Previous Bans + Cheat Reports. Finally, as mentioned earlier, players

are able to report cheating and other forms of disruptive behaviors during a match

through an in-game interface to help game designers keep a fair and balanced game

experience for users. Players have little to no gameplay history in early stages of the

game. However, we focus on a player and any of its associated accounts’ cheat report

and ban history, to infer on a player’s in-game behavior.

75

Figure 3·9: Results obtained after running the isolation forest on
the gameplay dataset using the additional anti-cheat service features
mentioned.

In Figure 3·9, we plot all previously detected outliers and we highlight the ones

classified as cheaters in red. The darker the color, the more the player exhibits

cheating behaviors. We also included already banned cheaters in our dataset to

verify whether they get labeled as such by the system. Whether a player has been

banned or not is not used in any part of the system and is only included in the game

logs for personal reference.

Evaluation

Detecting smurfs in competitive multiplayer games is still a relatively new problem.

Hence, with the lack of test datasets, we turn to game designers to confirm whether

the outliers detected are smurfs, cheaters, or neither. In Table 3.5, we include the

top 10 outliers with the lowest anomaly scores, that is, the top 10 outliers exhibiting

the most abnormal behaviors in the dataset. The first 4 columns correspond to the

76

features mentioned in section 3.3.2: number of matches needed to level up, number of

kills per match, rank placement, and shot accuracy averaged over the first 20 matches

played. The following 3 columns correspond to the features used to infer whether a

player was legitimately higher skilled, or was more likely using an external cheating

software to boost performance: total time between first and last known login, the

number of banned associated accounts followed by the total number of associated

accounts, and finally the number of cheat reports. The last two columns correspond

to the label assigned to the outliers by the system and by the game designers.

Out of the 182 outliers detected in our dataset, 64% of players had over 6 kills per

match over the first 20 matches played, 62% of them ranked in the top 5 positions

on average, and 87% of them required less than 20 games to level up. Finally, all

182 outliers averaged a shot accuracy of 0.57 in the first 20 matches played. After

further investigation by the game design team, we can confirm that 94% of outliers

were either cheaters or smurfs, with 65% of them having been confirmed to be smurfs.

When a player uses an external cheating software to boost performance, it is rela-

tively straightforward for game designers to confirm that the player is a cheater. For

the rest, it takes game designers approximately 20 to 30 minutes to check and con-

firm whether a high-skilled player in low level rankings is a smurf and to understand

the player’s intention (e.g. players that lost access to main account, players with

experience playing FPS video games, bad and disruptive intentions). By isolating

outliers in our dataset, we significantly reduce the number of players that need to be

investigated by prioritizing the most suspicious ones. The most significant features to

determine whether the players are players’ in-game behavioral patterns as described

in the earlier sections, as well as the number of associated accounts which help define

a suspicious player’s intentions. Finally, outliers flagged by our system that were

confirmed to be cheaters by the game designers have been banned from the game.

77

3.4 Discussion

While it may not be feasible to entirely eliminate cheating from games, it can be

detected and the players involved can be punished accordingly. We define game-

breaking cheaters as players that intentionally disrupt other players’ game experience

for personal pleasure and possible potential gains. There are many ways to cheat in

online video games, and in this chapter, we present a novel approach to detecting two

major cheating behaviors in competitive multiplayer games: collusion in team-based

multiplayer games (where collusion happens between teams of players) and high-skill

players in low-level rankings of FPS games.

Collusion in multiplayer games can be described as players coordinating to pur-

posely gain an unfair advantage, in a scenario in which they are posed as adversaries.

The term “smurf” on the other hand generally refers to skilled players that create

new accounts to be matched against novice players and gain a competitive advantage,

which puts novice players at a skill disadvantage in early stages of the game. Despite

the growing concerns from the gaming community, little work has been done to auto-

mate the detection and prevention of cheating in competitive gaming, and collusion

and smurfing have become one of the most disruptive behaviors encountered in FPS

games such as Fortnite, Apex Legends, League of Legends, and Dota 2 to name a

few.

We describe a system that detects outliers in a dataset based on a player’s in-game

behavioral patterns. Additionally, for colluding behaviors, we use a player’s external

and in-game social relationships paired with its in-game behavioral patterns, to infer

cross-team collusion in games. We automate the detection using Isolation Forests and

assign anomaly scores to each player that indicate the degree of cheating exhibited

by the player (or its corresponding team, in the case of collusion). Because of the

possibility of FP and the on-going discussions on whether common cheating behaviors

78

such as smurfing should be a bannable offense, we make sure that our system does

not take any direct action against suspected cheaters. Whether any action should be

in fact taken against suspected cheaters is left entirely to the discrepancy of the game

designers. And while human intervention from game design experts is still required to

verify the legitimacy of cheaters, our system significantly improves their workflow in

detecting cheaters in competitive multiplayer games and gives them more flexibility

regarding enforcement actions that could be taken against the players flagged by our

system, if deemed necessary.

79

Chapter 4

Concluding Remarks

4.1 Summary

With the rise in popularity of competitive multiplayer online games, the gaming

industry has become a prime target for cyber attacks and malicious activity. Gaming

companies are enhancing the stability and security of their network or gaming systems

to deal with these threats in an attempt to mitigate the impacts of these activities

and improve the gaming user experience. However, most current techniques only

detect threats of known types that follow a certain trend or behavior. More robust

and adequate techniques need to be developed in order to detect threats without

explicit description of the attack and adapt to various types of attacking behaviors and

environments. In this thesis, we show how the development of ML-based techniques

can contribute to building a more stable and safer network system and mitigate the

impacts of malicious activities in competitive multiplayer games. We analyze network

intrusion and cheating detection in settings with limited prior-knowledge on attacking

strategies and with little to no labeled datasets.

While chapters 2 and 3 focus on different threats, we find that behavioural-based

cheat detection is strongly related to intrusion detection. Such systems rely on two

techniques to identify malicious activity; the first is a knowledge-based detection

(or signature recognition) technique, and we show that advanced technologies based

on machine learning and concepts from game theory are well equipped to identify

the illicit activities and learn optimal defensive strategies against network intrusion.

80

The second technique is a behavioral-based detection technique and uses heuristic

analysis to identify anomalous behaviour. By incorporating ML-driven solutions, we

continuously analyze a player’s in-game behavioral patterns, flag suspected cheaters

and prevent confirmed cheaters from potentially pursuing fraudulent activities.

4.2 Contributions

The research we present focuses on the application of anomaly detection techniques

to identify and detect stealthy persistent threats and automate cheater detection in

competitive multiplayer games. The main contributions of this thesis are as follows.

• Adaptive Defensive Strategies. As an improvement over the current de-

fensive strategies, we introduce flexible and adaptive strategies to learn cost-effective

scheduling of defensive mechanisms to protect against the stealthy characteristics of

network intrusion, such as advanced persistent threats. Our model is based on tech-

niques from deep reinforcement learning that are better equipped to deal with the

limited information and uncertainty regarding the attacker’s moves and is the first

adaptive strategy which can play against any opponent with no prior knowledge in

the two player security game FlipIt. We extend the work to larger-action spaced FlipIt

to improve learning with lower-cost moves and generalize it to multiplayer FlipIt to

learn against multiple simultaneous attacks.

• Resource-Efficient Defensive Strategies. When resources such as mem-

ory, storage and processing powers are limited, it is important to develop cooperative

strategies across multiple defensive mechanisms. Cooperation requires that players

on a same team compromise, and therefore forgo their individual maximum payoffs.

For this reason, we introduce the cooperative game theoretic extension of the FlipIt

security game to solve the problem of credit assignment. Under this framework, we

81

propose a novel approach based on solution concepts from GT to approximate lo-

cal rewards and fairly distribute the global reward, in contrast to the shared reward

approach, reflecting each agent’s own contribution 1) to force cooperation between

adaptive agents and 2) to improve learning efficiency. With this model, defenders have

the ability to develop cooperative defensive strategies exhibiting the fair credit as-

signment and fast convergence rate in cooperative multiplayer FlipIt, allowing attacks

to be detected in a faster and more efficient manner.

• Generalized Cheater Detection. As an improvement over the current ma-

chine learning approaches that often detect specific behaviors based on pre-defined

rules, we present a more generalized anomaly detection system to detect a wider

variety of fraudulent behaviors in competitive multiplayer games. Our method is

based on analyzing features and heuristics, and detecting informative behavioural

characteristics of cheating, rather than detecting the cheating mechanism itself. The

proof-of-concept system has been tested on real-world, unlabeled, gameplay datasets

and shows significant success in its ability to distinguish between honest players and

cheaters. Our method also allows for a single system to be applied to many games

and detect a wider range of fraudulent behaviors with minimal re-training and at

little cost.

4.3 Future Work

Future work would focus on the continued generalization of our systems to detect

more complex behaviors, and the integration of the proposed cheating systems in

online games.

• In network intrusion threats, we assume that one player (the defender) is adap-

tive, and the other (the attacker) is non-adaptive. The problem hence comes down

to the defender learning what non-adaptive (renewal) strategy is being used by the

82

attacker, and playing an optimal counter-strategy. However, strategies employed by

the attacker are rarely ever fixed and we would like to extend our work to consider

dynamic and non-adaptive attacking strategies besides the class of renewal strategies.

Moreover, the current framework presents some limitations to the study of advanced

persistent threats. In our work, we assume that once a player makes a move, it occurs

instantaneously; this is not generally the case in real-world scenarios as it can take

some amount of time for mechanisms to carry out a move. For this reason, we would

like to analyze how non-instantaneous moves could potentially affect learning and

how adaptive strategies should be developed. We also introduce adaptive defensive

strategies based on deep reinforcement learning, and while our model has proven to be

better suited than other handcrafted solutions, there is an existing danger in relying

on training models solely based on opponent moves. In fact, the opponent may be

able to “fake” a strategy that leads our model to learn inaccurate counter-strategies,

which the opponent can later exploit. This is commonly referred to as leadability;

one solution to prevent leadability is for systems to learn from their mistakes instead

of their successes, which would prevent the model from learning from what it thinks

are correct moves.

• Our detection systems have great potential in minimizing cheating behaviors in

competitive multiplayer games. That said, we would like to continue the research on

colluding and smurf behaviors in team-based and competitive multiplayer games to

better understand the behaviors exhibited and improve the accuracy of the detection

systems. This would allow us to lower FP rates in our detection and to better differ-

entiate behavioral-based cheaters from ones that leverage external cheating software.

We would also like to analyze additional features in more depth, such as in-game lo-

cation for suspected colluders (whether an object such as a wall or building separates

two teams that are believed to be close in proximity), and player psychomotor skills

83

measurements (i.e. movement, coordination, speed) which could give us more insight

regarding a player’s skill set. Additionally, in our work, we focused on smurfs in the

early stages of games, in other words, in beginner game modes. Yet, we find smurfs

in different levels of BR games and we would like to extend our work to all ranked

mode levels, where players manipulate their gameplay statistics to play on lower-level

rankings and be matched against lower-skilled players.

References

Alpcan, T. and Basar, M. (2010). Network security: A decision and Game-Theoretic
approach. Cambridge University Press.

Buczak, A. L. and Guven, E. (2016). A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys
Tutorials, 18(2):1153–1176.

Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., and Pineau, J.
(2018). Tarmac: Targeted multi-agent communication.

Ding, D., Han, Q.-L., Xiang, Y., Ge, X., and Zhang, X.-M. (2018). A survey on
security control and attack detection for industrial cyber-physical systems. Neu-
rocomputing, 275:1674–1683.

Epic Games, Inc. (2006). Easy anti-cheat. https://easy.ac. (Online; last accessed
on 2022-04-29).

Falliere, N., Murchu, L. O., and Chien, E. (2011). W32. stuxnet dossier. Symantec
White Paper.

Feng, X., Zheng, Z., Hu, P., Cansever, D., and Mohapatra, P. (2015). Stealthy
attacks meets insider threats: A three-player game model. In IEEE Military
Communications Conference (MILCOM), pages 25–30.

Galli, L., Loiacono, D., Cardamone, L., and Lanzi, P. L. (2011). A cheating detection
framework for unreal tournament III: A machine learning approach. In 2011 IEEE
Conference on Computational Intelligence and Games, CIG 2011, pages 266 – 272.

Greige, L. and Chin, P. (2022a). Deep reinforcement learning for FlipIt security game.
In Benito, R. M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L. M., and Sales-Pardo,
M., editors, Complex Networks & Their Applications X, pages 831–843, Cham.
Springer International Publishing.

Greige, L. and Chin, P. (2022b). Shapley Q-value learning for cooperative multiplayer
flipit. Submitted.

Greige, L., De Mesentier Silva, F., Lawrence, C., Pierse, C., Shi, J., and Chin, P.
(2022a). Detecting high skill players in low level rankings. Submitted.

84

85

Greige, L., De Mesentier Silva, F., Meredith Trotter, C. L., Chin, P., and Varadarajan,
D. (2022b). Collusion detection in team-based multiplayer games. In Martin, A.,
Hinkelmann, K., Fill, H.-G., Gerber, A., Lenat, D., Stolle, R., and van Harmelen,
F., editors, Complex Networks & Their Applications X, Stanford University, Palo
Alto, California, USA.

Gueye, A., Marbukh, V., and Walrand, J. C. (2012). Towards a metric for commu-
nication network vulnerability to attacks: A game theoretic approach. In Game
Theory for Networks (GameNets).

Hu, P., Li, H., Fu, H., Cansever, D., and Mohapatra, P. (2015). Dynamic defense
strategy against advanced persistent threat with insiders. In IEEE Conference on
Computer Communications (INFOCOM), pages 747–755.

Kim, D., Moon, S., Hostallero, D., Kang, W. J., Lee, T., Son, K., and Yi, Y. (2019).
Learning to schedule communication in multi-agent reinforcement learning.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
CoRR, abs/1412.6980.

Knudsen, K. (2011). Impact of collusion and coalitions in RISK.

Kunreuther, H. and Heal, G. (2003). Interdependent security. Journal of Risk and
Uncertainty, 26(2):231–249.

Laasonen, J., Knuutila, T., and Smed, J. (2012). Eliciting collusion features. In 2nd
International Workshop on DIstributed SImulation & Online gaming. ACM.

Laasonen, J. and Smed, J. (2013). Detecting a colluding subset in a simple two-
dimensional game.

Laszka, A., Horvath, G., Felegyhazi, M., and Buttyán, L. (2014). Flipthem: Modeling
targeted attacks with flipit for multiple resources. In Poovendran, R. and Saad,
W., editors, Decision and Game Theory for Security, pages 175–194.

Laszka, A., Johnson, B., and Grossklags, J. (2013a). Mitigating covert compromises.
In Proceedings of the 9th International Conference on Web and Internet Economics
(WINE), volume 8289, pages 319–332.

Laszka, A., Johnson, B., and Grossklags, J. (2013b). Mitigation of targeted and
non-targeted covert attacks as a timing game. In 4th International Conference on
Decision and Game Theory for Security (GameSec), volume 8252, pages 175–191.

Liu, F. T., Ting, K. M., and hua Zhou, Z. (2008). Isolation forest. In In ICDM ’08:
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining.
IEEE Computer Society, pages 413–422.

86

Liu, Y., Yang, Y., and Sun, Y. L. (2008). Detection of collusion behaviors in online
reputation systems. In 2008 42nd Asilomar Conference on Signals, Systems and
Computers, pages 1368–1372.

Lowe, R., WU, Y., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I. (2017).
Multi-agent actor-critic for mixed cooperative-competitive environments. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Mazrooei, P., Archibald, C., and Bowling, M. (2013). Automating collusion detection
in sequential games. In Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, AAAI’13, page 675–682. AAAI Press.

Milosevic, N., Dehghantanha, A., and Choo, K.-K. (2017). Machine learning aided
android malware classification. Computers & Electrical Engineering, 61:266–274.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

Nash, J. F. (1950). Equilibrium points in ¡i¿n¡/i¿-person games. Proceedings of the
National Academy of Sciences, 36(1):48–49.

Owaida, A. (2021). Gaming industry under siege from cyberattacks during pandemic.
https://www.welivesecurity.com. (Online; last accessed on 2022-04-29).

Padhi, S. S. and Mohapatra, P. K. (2011). Detection of collusion in government
procurement auctions. Journal of Purchasing and Supply Management, 17(4):207
– 221.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.
Neural Information Processing Systems.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay (2011).
Scikit-learn: Machine learning in python. Journal of Machine Learning Research,
12(85):2825–2830.

87

Pham, V. and Cid, C. (2012). Are we compromised? Modelling security assessment
games. In Decision and Game Theory for Security, pages 234–247.

Schwartz, N. D. and Drew, C. (2011). Rsa faces angry users after breach. New York
Times, page B1.

Shapley, L. S. (1953). A Value for n-Person Games, pages 307–318. Princeton
University Press.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the
game of go without human knowledge. Nature, 550(7676):354–359.

Smed, J., Knuutila, T., and Hakonen, H. (2007). Towards swift and accurate collusion
detection. In 8th International Conference on Intelligent Games and Simulation,
Game-On 2007.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
The MIT Press.

Takahashi, D. (2021). Akamai: Cyberattacks on gaming grew 340% in pandemic.
http://venturebeat.com. (Online; last accessed on 2022-04-29).

Tan, A. (2021). Video game industry under relentless cyber attacks. https://www.

computerweekly.com. (Online; last accessed on 2022-04-29).

Vallve-Guionnet, C. (2005). Finding colluders in card games. In International Con-
ference on Information Technology: Coding and Computing (ITCC’05) - Volume
II, volume 2, pages 774–775 Vol. 2.

Valve Software, Inc. (2002). Valve anti-cheat (vac). https://developer.valvesoftware.

com. (Online; last accessed on 2022-04-29).

van Dijk, M., Juels, A., Oprea, A., and Rivest, R. L. (2013). Flipit: The game of
“stealthy takeover”. J. Cryptology, 26(4):655–713.

Villeneuve, N., Bennett, J. T., Moran, N., Haq, T., Scott, M., and Geers, K. (2013).
Operation ke3chang: Targeted attacks against ministries of foreign affairs. Fireeye
White Paper.

88

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Fre-
itas, N. (2016). Sample efficient actor-critic with experience replay. CoRR,
abs/1611.01224.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–
292.

Whitney, L. (2020). How cyberattacks are targeting video gamers and companies.
https://www.techrepublic.com. (Online; last accessed on 2022-04-29).

Xiao, L., Wan, X., Lu, X., Zhang, Y., and Wu, D. (2018). IoT security techniques
based on machine learning. ArXiv, abs/1801.06275.

Yeung, S. F. and Lui, J. C. S. (2008). Dynamic bayesian approach for detecting
cheats in multi-player online games. Multimedia Systems, 14(4):221–236.

89

CURRICULUM VITAE

Laura Greige

Education

Boston University, Boston, MA Sep 2017 – May 2022

Ph.D., Computer Science

Sorbonne Université, Paris, France 2015 – 2017

Master’s Degree with Honors, Artificial Intelligence

Sorbonne Université, Paris, France 2012 – 2015

Bachelor’s Degree, Applied Mathematics and Computer Science

Brown University, Providence, RI Jul 2014

Summer Research Student

Professional Experience

Electronic Arts, Redwood City, CA Sep 2021 – Mar 2022

AI Scientist Intern · Part-time

Electronic Arts, Redwood City, CA May – Aug 2021

AI Scientist Intern

Electronic Arts, Redwood City, CA May – Aug 2020

AI Scientist Intern

ISIR, Paris, France Feb – Jul 2017

Research Intern

Laboratoire d’Informatique de Paris 6 (LIP6), Paris, France Jun – Jul 2016

Summer Research Intern

Publications

Greige L., Wolf M., Chin P. (2022) Shapley Q-Value Learning for Team-Based
FlipIt. Submitted.

90

Greige L., De Mesentier Silva F., Lawrence C., Pierse C., Shi J., Chin P. (2022) De-
tecting High Skill Players in Low Level Rankings. Submitted.

Greige L., De Mesentier Silva F., Trotter M., Lawrence C., Chin P., Varadarajan
D. (2022) Collusion Detection in Team-Based Multiplayer Games. In: A.
Martin, K. Hinkelmann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen.
(eds) Proceedings of the AAAI 2022 Spring Symposium on Machine Learning and
Knowledge Engineering for Hybrid Intelligence (AAAI-MAKE 2022), Stanford Uni-
versity, Palo Alto, California, USA, March 2022.

Greige L., Chin P. (2022) Deep Reinforcement Learning for FlipIt Security
Game. In: Benito R.M., Cherifi C., Cherifi H., Moro E., Rocha L.M., Sales-Pardo
M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021.
Studies in Computational Intelligence, vol 1015. Springer, Cham.

Patents and Patent Applications

Greige L., De Messentier Silva F., Sulimanov A. 2022. Detecting High-Skilled Entities
in Low-Level Matches in Online Games. US Patent Application 17/457,194. Patent
pending.

Greige L., De Messentier Silva F., Trotter M., Narravula S., Aghdaie N. 2021. De-
tecting Collusion in Online Games. US Patent Application 17/302,837, filed May
2021. Patent pending.

